
JAISCR, 2019, Vol. 9, No. 3, pp. 177

APPLYING A NEURAL NETWORK ENSEMBLE TO
INTRUSION DETECTION

Simone A. Ludwig

Department of Computer Science, North Dakota State University,
Fargo, ND, USA

E-mail: simone.ludwig@ndsu.edu

Submitted: 27st July 2018; Accepted: 19th November 2018

Abstract

An intrusion detection system (IDS) is an important feature to employ in order to pro-
tect a system against network attacks. An IDS monitors the activity within a network of
connected computers as to analyze the activity of intrusive patterns. In the event of an
‘attack’, the system has to respond appropriately. Different machine learning techniques
have been applied in the past. These techniques fall either into the clustering or the classi-
fication category. In this paper, the classification method is used whereby a neural network
ensemble method is employed to classify the different types of attacks. The neural net-
work ensemble method consists of an autoencoder, a deep belief neural network, a deep
neural network, and an extreme learning machine. The data used for the investigation is
the NSL-KDD data set. In particular, the detection rate and false alarm rate among other
measures (confusion matrix, classification accuracy, and AUC) of the implemented neural
network ensemble are evaluated.
Keywords: Ensemble learning, Deep Neural Networks, NSL-KDD data set

1 Introduction

Cyber security is becoming more and more im-
portant when it comes to protecting networks, com-
puters, and data from attacks and unauthorized ac-
cess. The term cyber security encompasses many
things such as different technologies, processes, and
practices. The different categories include appli-
cation security, information security, network secu-
rity, disaster recovery, operational security and end-
user education. One of the challenges of computing
systems and network systems is the evolving nature
of threats. In the past, this challenge was dealt with
by protecting the most crucial system components
from the biggest known threats. However, this is
not good enough since it leaves the less important
portions of a system unprotected and vulnerable to
possible threats. Thus, new ways, methodologies,

and technologies need to be designed and invented
in order to protect systems better [1].

Network-based attacks have been increasing
over the past years; both in terms of frequency and
severity. One reason is that more and more tech-
nologies use communication networks, in particu-
lar, wireless communication systems. Therefore,
network security has to be a high priority to protect
against potential attacks. This is accomplished by
monitoring the network traffic as well as the usage
of a defense system. There are different attacks on
communication network systems, which are: flood-
ing, distributed denial-of-service, surfing, vulnera-
bilities, etc. Intrusion detection systems are sys-
tems that are designed to deal with the recognition
of normal behavior on the network versus abnor-
mal behavior on the network, in particular, when

 – 188
10.2478/jaiscr-2019-0002

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

178 Simone A. Ludwig

actions are recognized that threaten the integrity of
the computer system [2].

Today’s system and data intrusions are quite so-
phisticated. Thus, these systems require a multi-
tiered approach [3], which implies that companies
that secure their networks often use several tech-
nologies to prevent cyber attacks and intrusions.
There is a variety of tools and methodologies avail-
able, however, the two fundamental elements to a
secure network configuration is the firewall and the
intrusion detection system.

IDS (intrusion detection system) are either host-
based or network-based. The host-based system sits
on a particular host and watches for potential at-
tacks whereas a network-based system looks at the
network traffic in real time in order to detect intru-
sive patterns in the network [4]. Ideally, a secu-
rity model should employ both a host-based and a
network-based solution since both of these have ad-
vantages and disadvantages. One drawback for a
host-based solution is that resources are taken away
from the host in order to enable the host-based pro-
tection system. In addition, host-based solutions are
reactive, and thus, can only respond after an attack
has actually occurred, which is undesirable. On the
other side, network-based solutions are usually in-
stalled in the form of a hardware appliance, and thus
do not need to use the system resources. This solu-
tion tends to be more costly, however, the installa-
tion process is much easier compared to the host-
based solution.

An intrusion is detected by observing the dif-
ference between normal operating and intrusion be-
havior, and thus, divides into anomaly detection and
misuse detection [5]. Anomalies are detected by
analyzing features of normal behavior on the net-
work and identifying anomalies. The advantage of
anomaly detection is that unknown intrusion types
can be detected, however, the process might result
in a high rate of false positives. On the other hand,
misuse detection analyzes attack behavior by estab-
lishing templates of attack characteristics, which is
then used to determine the attacks. Misuse detec-
tion has the characteristics of high accuracy and fast
speed, however, the templates need to be updated
very frequently otherwise, this method would not
be effective.

Past research suggests that information avail-
able in the network is sufficient, and therefore, IDSs
are preferred [6, 7, 8, 9]. Examples of network-
based systems, which have been commercial suc-
cesses are Suircate [10], Snort [11], and Bro IDS
[12]. As reported by the commercial systems, the
usefulness of IDSs is limited due to poor qual-
ity alerts since unfortunately perfect detection is
impossible [13]. For example, Snort deployed at
a large financial institution, has reported 411,947
alerts per day [14]. Managing so many alerts by
hand is completely infeasible, thus the need for ever
improved IDS development.

The aim of this paper is to improve the clas-
sification accuracy of IDSs. In particular, this pa-
per analyzes and classifies the NSL-KDD data set
[15] to distinguish between normal and the different
types of intrusion behavior and is an extension of
the work published in [16]. The previous paper only
analyzed normal vs. intrusive behavior whereas this
paper also classifies the different attack classes. The
classification in this paper is based on a deep learn-
ing ensemble method whereby related deep learn-
ing models are run on the data set and the weighted
outcome is evaluated, thus, employing an ensemble
method.

The paper is arranged as follows. Section 2 de-
scribes related work in the area of intrusion detec-
tion systems. In Section 3, the proposed approach is
described. Section 4 contains the experiments con-
ducted as well as the results and findings. The con-
clusion and future work is given in Section 5.

2 Related Work

In order to prevent temporary and permanent
damages caused by unauthorized access, a multi-
tude of different systems have been built to monitor
data flow in networks. Unfortunately, none of these
systems can detect all types of intrusions since the
attack permutations are occurring over time. Thus,
in an attempt to overcome this, machine learning al-
gorithms have been applied to classify normal and
anomalous behavior on the network.

Related work in the area can be summarized as
follows. In [17, 18], K-means and K-nearest neigh-
bor algorithms were used to perform the classifica-
tion task. The approach works by using a centroid

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

179Simone A. Ludwig

actions are recognized that threaten the integrity of
the computer system [2].

Today’s system and data intrusions are quite so-
phisticated. Thus, these systems require a multi-
tiered approach [3], which implies that companies
that secure their networks often use several tech-
nologies to prevent cyber attacks and intrusions.
There is a variety of tools and methodologies avail-
able, however, the two fundamental elements to a
secure network configuration is the firewall and the
intrusion detection system.

IDS (intrusion detection system) are either host-
based or network-based. The host-based system sits
on a particular host and watches for potential at-
tacks whereas a network-based system looks at the
network traffic in real time in order to detect intru-
sive patterns in the network [4]. Ideally, a secu-
rity model should employ both a host-based and a
network-based solution since both of these have ad-
vantages and disadvantages. One drawback for a
host-based solution is that resources are taken away
from the host in order to enable the host-based pro-
tection system. In addition, host-based solutions are
reactive, and thus, can only respond after an attack
has actually occurred, which is undesirable. On the
other side, network-based solutions are usually in-
stalled in the form of a hardware appliance, and thus
do not need to use the system resources. This solu-
tion tends to be more costly, however, the installa-
tion process is much easier compared to the host-
based solution.

An intrusion is detected by observing the dif-
ference between normal operating and intrusion be-
havior, and thus, divides into anomaly detection and
misuse detection [5]. Anomalies are detected by
analyzing features of normal behavior on the net-
work and identifying anomalies. The advantage of
anomaly detection is that unknown intrusion types
can be detected, however, the process might result
in a high rate of false positives. On the other hand,
misuse detection analyzes attack behavior by estab-
lishing templates of attack characteristics, which is
then used to determine the attacks. Misuse detec-
tion has the characteristics of high accuracy and fast
speed, however, the templates need to be updated
very frequently otherwise, this method would not
be effective.

Past research suggests that information avail-
able in the network is sufficient, and therefore, IDSs
are preferred [6, 7, 8, 9]. Examples of network-
based systems, which have been commercial suc-
cesses are Suircate [10], Snort [11], and Bro IDS
[12]. As reported by the commercial systems, the
usefulness of IDSs is limited due to poor qual-
ity alerts since unfortunately perfect detection is
impossible [13]. For example, Snort deployed at
a large financial institution, has reported 411,947
alerts per day [14]. Managing so many alerts by
hand is completely infeasible, thus the need for ever
improved IDS development.

The aim of this paper is to improve the clas-
sification accuracy of IDSs. In particular, this pa-
per analyzes and classifies the NSL-KDD data set
[15] to distinguish between normal and the different
types of intrusion behavior and is an extension of
the work published in [16]. The previous paper only
analyzed normal vs. intrusive behavior whereas this
paper also classifies the different attack classes. The
classification in this paper is based on a deep learn-
ing ensemble method whereby related deep learn-
ing models are run on the data set and the weighted
outcome is evaluated, thus, employing an ensemble
method.

The paper is arranged as follows. Section 2 de-
scribes related work in the area of intrusion detec-
tion systems. In Section 3, the proposed approach is
described. Section 4 contains the experiments con-
ducted as well as the results and findings. The con-
clusion and future work is given in Section 5.

2 Related Work

In order to prevent temporary and permanent
damages caused by unauthorized access, a multi-
tude of different systems have been built to monitor
data flow in networks. Unfortunately, none of these
systems can detect all types of intrusions since the
attack permutations are occurring over time. Thus,
in an attempt to overcome this, machine learning al-
gorithms have been applied to classify normal and
anomalous behavior on the network.

Related work in the area can be summarized as
follows. In [17, 18], K-means and K-nearest neigh-
bor algorithms were used to perform the classifica-
tion task. The approach works by using a centroid

APPLYING A NEURAL NETWORK ENSEMBLE TO . . .

function to choose the average and closest grouping
of new instances in order to group similar training
examples together.

Another classification approach used for IDSs
are support vector machines (SVM). SVM divides
the dimensional space into a smaller dimensional
hyperplane [19, 20]. In [21], SVM was used to au-
tomate feature selection. Feature selection is a pre-
processing step that is usually applied in the area of
data mining, thus, improving the classification rate.
The so-called CSV-ISVM algorithm was proposed
in [22] and uses incremental SVM in order to select
candidate support vectors showing the advantages
in real-time network intrusion detection.

Threshold-based anomaly detection, also
known as signature matching, has been widely
applied to model network traffic as discussed in
[23]. The authors argue that traditional network-
based profile models are not sufficient enough to
satisfy user profiles in the environment. There-
fore, a genetic algorithm approach was used to find
signatures of pattern detection rules via permuta-
tions of parent signatures. Another approach pro-
posed a core-plus-module framework (STAT) that
is based on the state transition analysis technique
[24]. This is done in order to tailor the design of
an IDS to specific traffic types and environments.
Other research compared a genetic algorithm ap-
proach with other approaches such as Naive Bayes
and K-nearest neighbor as provided in [19].

Applications of deep neural networks (DNN)
have seen quite an uptake in recent years, in par-
ticular, since significant breakthroughs have been
achieved for tasks such as image recognition,
speech recognition, text recognition, and language
translation. Deep learning encompasses many dif-
ferent neural network models such as deep belief
neural networks, convolutional neural networks, au-
toencoders, recurrent neural networks, etc. All
these deep neural network approaches have been
developed each serving a different purpose. For
example, deep belief networks (DBN) [25] was
applied to image, text, and voice learning tasks
whereby a DBN is formed by stacking several re-
stricted Boltzmann machines (RBM) [26]. These
RBMs serve as multiple processing layers in order
to learn the representation and features inherent in
the data with multiple levels of abstraction.

Deep learning methods have been applied to in-
trusion detection as well. Several different DBN ar-
chitectures have been applied to the intrusion de-
tection task. For example, a DBN approach is pro-
posed in [27] where a two-layer RBM is used to
train the network in an unsupervised fashion. This
is followed by a feedforward layer whereby back-
propagation is used to train this layer in a super-
vised fashion. The authors report on the classifica-
tion accuracy based on the test set comparing their
approach with SVM, and a hybrid version of DBN
with SVM.

A DBN algorithm was implemented and ap-
plied on the NSL-KDD data set [28]. The mea-
sures used were classification accuracy, TP (true
positives), FP (false positives), TN (true negatives),
and FN (false negatives).

A hybrid approach based on autoencoder and
DBN was implemented in [29]. The autoencoder
learning method is used to reduce the dimension-
ality of the data. This dimensionality reduction
allows to convert high-dimensional data to a low-
dimensional transformation with nonlinear map-
ping, and thus extracts the main features of the data.
After this first step, DBN learning is applied to de-
tect anomalies. The DBN consists of multilayer
RBMs followed by a feedforward layer. First, the
RBMs are trained using an unsupervised approach,
which is then followed by supervised training with
the feedforward layer. The measures reported are
TPR (true positive rate), FPR (false positive rate),
accuracy and CPU time.

An improved version of DBM is proposed in
[30]. Since the fine-tuning method of DBN is very
time-consuming and suffers from the possibility
of only reaching a local optimum, ELM (Extreme
Learning Machines) was applied. This approach is
used in order to improve the accuracy as well as the
efficiency. The improved DBN was compared with
the normal DBN and achieved an improvement of
0.6% in the detection rate by roughly reducing the
execution time by half. However, besides the detec-
tion rate and the execution time no other measures
were reported on.

In [31], an accelerated DNN is proposed. A
parallel version of the DNN is used to accelerate
the training phase, which is a very time consuming
task. The training phase consists of several forward
passes and backward passes. The input is applied

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

180 Simone A. Ludwig

to the input nodes and each layer computes the out-
put on a layer-by-layer basis; this step is the for-
ward pass. The backward pass first calculates the
error between the actual output and the desired out-
put and then backpropagates this error by adjusting
the weights in each layer to reduce the error during
the next iteration. Since gradient calculations are
involved during the backpropagation process, and
given the depth of the network long training times
are unavoidable.

A deep learning approach for flow-based
anomaly detection in a Software Defined Network-
ing (SDN) environment is introduced in [32]. The
DNN model is built using six basic features, the
ones that can be easily obtained in an SDN envi-
ronment, and different learning rates were experi-
mented with. The results were very promising with
the best accuracy achieved when the learning rate
was set to 0.0001.

It is important to note that some of the deep
learning methods listed as related work were ap-
plied to the KDD data set [33] and others to the
NSL-KDD data set.

3 Proposed Approach

Ensemble learning is an approach where sev-
eral classifiers are trained and their results are fused
together in order to separate the different classes.
Ensemble techniques are also known as multiple
classifier systems, or just ensemble systems. In this
paper, several deep neural network approaches are
used and their results are fused together in order to
distinguish between normal and attack behavior of
a network. Ensemble approaches have lead to very
promising results, usually achieving a higher clas-
sification accuracy than single classifier approaches
alone.

3.1 Basic Concepts of Ensemble Learning

The concept of ensemble learning was first in-
troduced in 1979 [34], which used an ensemble sys-
tem in a divide-and-conquer fashion whereby the
feature space was partitioned using two or more
classifiers. More than 10 years later, another ensem-
ble system was introduced showing that the gen-
eralization performance of similar neural network
configurations can be improved using ensembles to

introducing the variance reduction property [35].
However, research in [36] placed ensemble systems
at the center of machine learning research. This was
achieved by proving that a strong classifier in the
probably approximately correct sense can be gener-
ated by combining weak classifiers through a pro-
cedure called boosting.

The following paragraphs describe the details of
ensemble learning.

Definition 1 Let Ω = {ω1,ω2, ...,ωM} be a
set of class labels, and a function D : Rn → Ω
is called a classifier with the feature vector X =
(X1,X2, ...,Xn) ∈ Rn.

Definition 2 Let h1,h2, ...,hM,hi : Rn → R, i =
1, ...,M be discriminator functions that correspond
to the class labels ω1,ω2, ...,ωM, respectively.
Then, the classifier D belonging to this discrimina-
tor function is

D(X) = ω j∗ ⇔ h j∗(X) =
M

max
j=1

(h j(X)), (1)

for all X ∈ Rn.

Definition 3 Let D1,D2, ...,DL be classifiers and
the majority voting ensemble classifier Dma j : Rn →
Ω is obtained from these classifiers

Dma j(X)=ωi∗ ⇔ |{ j : D j(X)=ωi∗, j = 1, ...,M}|

=
M

max
i=1

|{ j : D j(X) = ωi, j = 1, ...,M}|. (2)

Definition 4 Let D1,D2, ...,DL be classifiers and
β=(β1,β2, ...,βL)∈RL be a weight vector assigned
to the classifiers. Then, the weighted majority vot-
ing ensemble classifier Dwma j : R → Ω is defined
by

Dwma j(X)=ωi∗ ⇔
L

∑
j=1

D j(X)=ωi∗

β j =
M

max
i=1

(
L

∑
j=1

D j(X)=ωi

β j

)
.

(3)

3.2 Proposed Ensemble Deep Neural Net-
work Classifiers

3.2.1 Autoencoder (AE)

Autoencoders are composed of one input, one
hidden and one output layer. The output received

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

181Simone A. Ludwig

to the input nodes and each layer computes the out-
put on a layer-by-layer basis; this step is the for-
ward pass. The backward pass first calculates the
error between the actual output and the desired out-
put and then backpropagates this error by adjusting
the weights in each layer to reduce the error during
the next iteration. Since gradient calculations are
involved during the backpropagation process, and
given the depth of the network long training times
are unavoidable.

A deep learning approach for flow-based
anomaly detection in a Software Defined Network-
ing (SDN) environment is introduced in [32]. The
DNN model is built using six basic features, the
ones that can be easily obtained in an SDN envi-
ronment, and different learning rates were experi-
mented with. The results were very promising with
the best accuracy achieved when the learning rate
was set to 0.0001.

It is important to note that some of the deep
learning methods listed as related work were ap-
plied to the KDD data set [33] and others to the
NSL-KDD data set.

3 Proposed Approach

Ensemble learning is an approach where sev-
eral classifiers are trained and their results are fused
together in order to separate the different classes.
Ensemble techniques are also known as multiple
classifier systems, or just ensemble systems. In this
paper, several deep neural network approaches are
used and their results are fused together in order to
distinguish between normal and attack behavior of
a network. Ensemble approaches have lead to very
promising results, usually achieving a higher clas-
sification accuracy than single classifier approaches
alone.

3.1 Basic Concepts of Ensemble Learning

The concept of ensemble learning was first in-
troduced in 1979 [34], which used an ensemble sys-
tem in a divide-and-conquer fashion whereby the
feature space was partitioned using two or more
classifiers. More than 10 years later, another ensem-
ble system was introduced showing that the gen-
eralization performance of similar neural network
configurations can be improved using ensembles to

introducing the variance reduction property [35].
However, research in [36] placed ensemble systems
at the center of machine learning research. This was
achieved by proving that a strong classifier in the
probably approximately correct sense can be gener-
ated by combining weak classifiers through a pro-
cedure called boosting.

The following paragraphs describe the details of
ensemble learning.

Definition 1 Let Ω = {ω1,ω2, ...,ωM} be a
set of class labels, and a function D : Rn → Ω
is called a classifier with the feature vector X =
(X1,X2, ...,Xn) ∈ Rn.

Definition 2 Let h1,h2, ...,hM,hi : Rn → R, i =
1, ...,M be discriminator functions that correspond
to the class labels ω1,ω2, ...,ωM, respectively.
Then, the classifier D belonging to this discrimina-
tor function is

D(X) = ω j∗ ⇔ h j∗(X) =
M

max
j=1

(h j(X)), (1)

for all X ∈ Rn.

Definition 3 Let D1,D2, ...,DL be classifiers and
the majority voting ensemble classifier Dma j : Rn →
Ω is obtained from these classifiers

Dma j(X)=ωi∗ ⇔ |{ j : D j(X)=ωi∗, j = 1, ...,M}|

=
M

max
i=1

|{ j : D j(X) = ωi, j = 1, ...,M}|. (2)

Definition 4 Let D1,D2, ...,DL be classifiers and
β=(β1,β2, ...,βL)∈RL be a weight vector assigned
to the classifiers. Then, the weighted majority vot-
ing ensemble classifier Dwma j : R → Ω is defined
by

Dwma j(X)=ωi∗ ⇔
L

∑
j=1

D j(X)=ωi∗

β j =
M

max
i=1

(
L

∑
j=1

D j(X)=ωi

β j

)
.

(3)

3.2 Proposed Ensemble Deep Neural Net-
work Classifiers

3.2.1 Autoencoder (AE)

Autoencoders are composed of one input, one
hidden and one output layer. The output received

APPLYING A NEURAL NETWORK ENSEMBLE TO . . .

by the output layer is a reconstruction of the in-
put after the input has been ‘squished’ through a
smaller hidden layer. This process offers dimen-
sionality reduction and thus a compression similar
to PCA (principle component analysis). The fea-
tures that are extracted via the hidden layer can be
used to train a feedforward layer. This effectively
removes the output layer from the autoencoder, so
that the hidden layer can be used as input features
for the classification or another autoencoder. The
network is being trained by using unsupervised data
followed by the fine-tuning step whereby the last
layer is trained using supervised data.

The autoencoder architecture that was used for
the experiments is identical to the implementation
in [31]. The architecture consists of two autoen-
coders of size 20 and 10, respectively, followed by
a fully connected layer of size 5.

3.2.2 Deep Belief Neural Network (DBN)

A DBN trains a sequence of RBMs by defining
the probability distributions over the hidden layer in
order to estimate the probability of the generating
visible layer. This is achieved by learning certain
parameters via random sampling in order to learn
the model. The cascade of RBMs allows the hid-
den vectors of one RBM to be the input for the next
RBM etc.

The following rules are applied:

– If the number of hidden units in the top layer is
above a certain threshold, then the performance
converges to a certain accuracy.

– The performance tends to increase with the
training of each RBM.

– The performance decreases as the number of
layers increases.

The stacking of RBM layers is effectively a
feature extraction method. The training of the
RBM layers is done without the labels (unsuper-
vised training). The last layer of the network is
a fully connected layer and is trained with labeled
data (supervised training).

The DBN architecture that was used for the ex-
periments consisted of 2 RBM layers with 20 and
15 nodes, respectively, followed by a 15-node fully
connected layer.

3.2.3 Deep Neural Network (DNN)

A DNN consists of an input, several hidden lay-
ers, and an output layer and is trained using back-
propagation in order to minimize the error between
the actual output and the desired output.

For the experiments, a network with two hidden
layers of size 25 and 20 was implemented. Stan-
dard backpropagation has two shortcomings; the
first is that a fixed learning rate is used, and the sec-
ond that the search can get stuck in local minima.
Thus, the Adam optimizer was used [38]. Adam
(Adaptive Moment Estimation) uses separate learn-
ing rates for each weight as well as an exponentially
decaying average of previous gradients, which leads
to better results.

3.2.4 Extreme Learning Machine RBM (ELM)

Extreme learning machine is a learning algo-
rithm that is used to train a single hidden layer
neural network [39]. The input weights and hid-
den biases are randomly generated and the out-
put weights are calculated by the regularized least
square method. Thus, resulting in a simple de-
terministic solution. Since there are no iterations
and/or parameter tuning involved as in backpropa-
gation based neural networks, the method is very
fast. Moreover, the regularized least squares com-
putations of the ELM are much faster than solving
the quadratic programming problem as is the case
in SVM. Several studies have shown that ELM is
much more efficient than standard NN and SVM
and at the same time achieves higher generalization
performance [40].

The ELM architecture that was used for the ex-
periments follows the implementation as given in
[30]. The network structure used is a 110-90-50-25
layer architecture trained with a maximum number
of iterations of 300.

4 Experiments and Results

4.1 NSL-KDD Data set

The MIT Lincoln Lab held a DARPA-
sponsored IDS event which simulated an attack sce-
nario to the Air-Force base with a repeat event one
year later [41] in 1998. Improvements were sug-
gested by the computer security community dur-

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

182 Simone A. Ludwig

ing these events. The DARPA data set [42] con-
sists of host and network data files recorded dur-
ing a seven week time period. The first two weeks
were attack-free whereas the remaining weeks con-
tained also attack data. In order to make it easier for
the data mining community to apply machine learn-
ing techniques, another data set - the KDD99 data
set was created. This was done by preprocessing
the data and extracting the relevant features. The
output classes are divided into 5 categories namely
DOS (denial of service), probe, R2L (Root to local),
U2R (user to root), and normal. The KDD99 data
is still in use today and has been extensively stud-
ied. Several researchers have pointed out various
shortcomings [43]. These are the following:

– Imbalanced data set; 80% is attack data.

– U2R and R2L attacks are rare.

– Duplicate records in both training and testing
data set.

Thus, these shortcomings were alleviated with the
introduction of the NSL-KDD data set. The NSL-
KDD data set contains 41 features that are either
continuous or discrete. The features of the data set
are grouped into four categories:

– Basic features that are derived from the packet
headers without inspecting the payload informa-
tion.

– Content features for which domain knowledge
is used to assess the payload of the original TCP
packets.

– Time-based traffic features that are extracted to
capture the properties during a 2-second time
window.

– Host-based traffic features that are extracted to
assess attacks that span intervals of longer than
2-second time periods.

The outcome of the network traffic is given as
either normal or a specific attack type. The simu-
lated attack types fall into one of the following cat-
egories:

– Denial of Service (DoS): this is an attack that oc-
cupies either a computing or memory resource
so that no other requests can be serviced.

– Probing: an attacker scans the network to gather
information in order to exploit the systems; an
example is port scanning.

– Remote to Local (R2L): an attacker sends a
packet to the network by exploiting some vulner-
ability in order to gain local access; an example
is password guessing.

– User to root (U2R): an attacker accesses a nor-
mal user account and exploits vulnerability to
gain root access to the system; an example is a
buffer overflow attack.

There are different attack types that map to the dif-
ferent attack classes; these are outlined in Table 1.

Table 1. Mapping of attack types to attack classes

Attack class Attack types

DoS back, land, neptune,
pod, smurf, teardrop,
mailbomb, apache2,
processtable, udpstorm

Probe ipsweep, nmap,
portsweep, satan, mscan,
saint

R2L ftp write, guess passwd,
imap, multihop, phf, spy,
warezclient, warezmas-
ter, sendmail, named,
snmpgetattack, sn-
mpguess, xlock, xsnoop,
worm

U2R buffer overflow, load-
module, perl, rootkit,
httptunnel, ps, sqlattack,
xterm

Table 2 shows the number of training and test-
ing records and their distribution based on the type
of network traffic (normal or attack type). There are
125,973 records in the training data set, and 22,543
records in the testing data set.

For the visualization of the data, PCA (princi-
pal component analysis) is used. PCA is a statistical
procedure that uses an orthogonal transformation to
convert the data points of correlated variables into
a set of values of uncorrelated variables (principal
components). The first principal component has the

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

183Simone A. Ludwig

ing these events. The DARPA data set [42] con-
sists of host and network data files recorded dur-
ing a seven week time period. The first two weeks
were attack-free whereas the remaining weeks con-
tained also attack data. In order to make it easier for
the data mining community to apply machine learn-
ing techniques, another data set - the KDD99 data
set was created. This was done by preprocessing
the data and extracting the relevant features. The
output classes are divided into 5 categories namely
DOS (denial of service), probe, R2L (Root to local),
U2R (user to root), and normal. The KDD99 data
is still in use today and has been extensively stud-
ied. Several researchers have pointed out various
shortcomings [43]. These are the following:

– Imbalanced data set; 80% is attack data.

– U2R and R2L attacks are rare.

– Duplicate records in both training and testing
data set.

Thus, these shortcomings were alleviated with the
introduction of the NSL-KDD data set. The NSL-
KDD data set contains 41 features that are either
continuous or discrete. The features of the data set
are grouped into four categories:

– Basic features that are derived from the packet
headers without inspecting the payload informa-
tion.

– Content features for which domain knowledge
is used to assess the payload of the original TCP
packets.

– Time-based traffic features that are extracted to
capture the properties during a 2-second time
window.

– Host-based traffic features that are extracted to
assess attacks that span intervals of longer than
2-second time periods.

The outcome of the network traffic is given as
either normal or a specific attack type. The simu-
lated attack types fall into one of the following cat-
egories:

– Denial of Service (DoS): this is an attack that oc-
cupies either a computing or memory resource
so that no other requests can be serviced.

– Probing: an attacker scans the network to gather
information in order to exploit the systems; an
example is port scanning.

– Remote to Local (R2L): an attacker sends a
packet to the network by exploiting some vulner-
ability in order to gain local access; an example
is password guessing.

– User to root (U2R): an attacker accesses a nor-
mal user account and exploits vulnerability to
gain root access to the system; an example is a
buffer overflow attack.

There are different attack types that map to the dif-
ferent attack classes; these are outlined in Table 1.

Table 1. Mapping of attack types to attack classes

Attack class Attack types

DoS back, land, neptune,
pod, smurf, teardrop,
mailbomb, apache2,
processtable, udpstorm

Probe ipsweep, nmap,
portsweep, satan, mscan,
saint

R2L ftp write, guess passwd,
imap, multihop, phf, spy,
warezclient, warezmas-
ter, sendmail, named,
snmpgetattack, sn-
mpguess, xlock, xsnoop,
worm

U2R buffer overflow, load-
module, perl, rootkit,
httptunnel, ps, sqlattack,
xterm

Table 2 shows the number of training and test-
ing records and their distribution based on the type
of network traffic (normal or attack type). There are
125,973 records in the training data set, and 22,543
records in the testing data set.

For the visualization of the data, PCA (princi-
pal component analysis) is used. PCA is a statistical
procedure that uses an orthogonal transformation to
convert the data points of correlated variables into
a set of values of uncorrelated variables (principal
components). The first principal component has the

APPLYING A NEURAL NETWORK ENSEMBLE TO . . .

Table 2. Destribution of training and testing records

Normal DoS Probe U2R R2L Total

Train 67,343 45,927 11,656 52 995 125,973
Test 9,711 7,458 2,421 200 2,754 22,543

largest possible variance and each of the other com-
ponents has the second, third, etc. highest variance.
Thus, the resulting vectors present an uncorrelated
orthogonal basis set.

Figure 1 shows the result of the PCA applied
to the training data set. The Figure shows the data
separated into the different attack classes as well as
the normal class using PCA, i.e., all 5 classes are
shown.

Figure 1. Four attack types

4.2 Evaluation Measures

The following are the performance measures
used to evaluate the ensemble classifier:

– Confusion matrix: contains the number of ac-
tual and predicted classifications achieved by the
classifier.

– False positives (FP): defines the number of de-
tected attacks that are actually normal behavior.

– False negatives (FN): are the wrong predictions
whereby instances that are attacted are classified
as normal.

– True positive (TP): instances that are correctly
classified as normal.

– True negatives (TN): attack instances that are
correctly classified.

– Accuracy or True positive rate (TPR): percent-
age of correct predictions compared to all pre-
dictions.

– Area Under Curve (AUC): describes the curve
between TPR and FPR and the area under the
curve; FPR is calculated as

FP
T N +FN

. (4)

– False alarm rate: is calculated as

FP
T N

. (5)

– Detection rate: is calculated as

T N −FN
T N

. (6)

– Precision (P): is calculated as

T P
T P+FP

. (7)

– Recall (R): is the proportion of instances belong-
ing to the positive class that are correctly pre-
dicted as positive and calculated as

T P
T P+FN

. (8)

– F1-score: also known as F-score or F-measure
considers both precision and recall to compute
the score; it is computed as

2× P×R
P+R

. (9)

4.3 Results

The experiments from the previous binary clas-
sification where the outcomes normal and attack
were investigated achieved the following results
[16]:

– Accuracy = 92.50%

– AUC = 91.62%

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

184 Simone A. Ludwig

– False alarm rate = 14.72%

– Detection rate = 97.95%

– F1 score = 93.70%

In addition, in the same paper [16] a compari-
son was done with DNN [37], DBN [27], Autoen-
coder DNN [31], ELM-DBN [30], and DNN2 [32].
From the results, we saw that our proposed method
achieved values of 93%, 92% and 92% for preci-
sion, recall and f-measure, respectively and over-
all obtained better results with the exception of the
classification accuracy.

The following are the results of the run achieved
during the testing phase. Table 4.3 shows the confu-
sion matrix whereby 9,391 and 6,680 are correctly
classified as normal and DoS, respectively.

Table 3. Confusion matrix - normal vs. DoS

normal DoS

normal 9,391 320
DoS 778 6,680

The different metric scores are listed in Table 4.
The main measure for IDSs is the false alarm rate,
which should be low, and the detection rate, which
should be high. Results of 3.30% and 89.57% are
achieved, respectively. Other values of importance
are the classification accuracy and AUC with values
of 93.60% and 93.14%, respectively.

Table 4. Various metric scores - normal vs. DoS

Accuracy 0.9360480
AUC 0.9313650

False alarm rate 0.0329523
Detection rate 0.8956820

F1 score 0.9240560

Precision, recall, F1-score and support results are
given in Table 5.

Table 5. Precision, recall, F1-score and support -
normal vs. DoS

Precision Recall F1-score Support

0.0 0.92 0.97 0.94 9,711
1.0 0.95 0.90 0.92 7,458
avg/total 0.94 0.94 0.94 17,169

Table 3 displays the confusion matrix show-
ing 8,807 and 2,253 records were correctly clas-
sified as normal and probe, respectively, with 1,072
records being misclassified.

Table 6. Confusion matrix - normal vs. Probe

normal probe

normal 8,807 904
probe 168 2,253

A false alarm rate of 9.31% and a detection
rate of 93.06% were achieved on the test data set
as shown in Table 4. A classification accuracy of
91.16% was achieved with an AUC of 91.88%. The
F1-score resulted in 80.78%.

Table 7. Various metric scores - normal vs. Probe

Accuracy 0.9116390
AUC 0.9187580

False alarm rate 0.0930903
Detection rate 0.9306070

F1 score 0.8078160

Precision, recall, F1-score and support results
are given in Table 8.

Table 8. Precision, recall, F1-score and support -
normal vs. Probe

Precision Recall F1-score Support

0.0 0.98 0.91 0.94 9,711
1.0 0.71 0.93 0.81 2,421

avg/total 0.93 0.91 0.92 12,132

Table 3 shows the confusion matrix whereby
9,694 and 892 records are correctly classified as
normal and R2L, respectively.

Table 9. Confusion matrix - normal vs. R2L

normal R2L

normal 9,694 17
R2L 1,862 892

The different metric scores are listed in Table
10. Results of 0.17% and 32.39% are achieved
for false alarm rate and detection rate, respectively.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

185Simone A. Ludwig

– False alarm rate = 14.72%

– Detection rate = 97.95%

– F1 score = 93.70%

In addition, in the same paper [16] a compari-
son was done with DNN [37], DBN [27], Autoen-
coder DNN [31], ELM-DBN [30], and DNN2 [32].
From the results, we saw that our proposed method
achieved values of 93%, 92% and 92% for preci-
sion, recall and f-measure, respectively and over-
all obtained better results with the exception of the
classification accuracy.

The following are the results of the run achieved
during the testing phase. Table 4.3 shows the confu-
sion matrix whereby 9,391 and 6,680 are correctly
classified as normal and DoS, respectively.

Table 3. Confusion matrix - normal vs. DoS

normal DoS

normal 9,391 320
DoS 778 6,680

The different metric scores are listed in Table 4.
The main measure for IDSs is the false alarm rate,
which should be low, and the detection rate, which
should be high. Results of 3.30% and 89.57% are
achieved, respectively. Other values of importance
are the classification accuracy and AUC with values
of 93.60% and 93.14%, respectively.

Table 4. Various metric scores - normal vs. DoS

Accuracy 0.9360480
AUC 0.9313650

False alarm rate 0.0329523
Detection rate 0.8956820

F1 score 0.9240560

Precision, recall, F1-score and support results are
given in Table 5.

Table 5. Precision, recall, F1-score and support -
normal vs. DoS

Precision Recall F1-score Support

0.0 0.92 0.97 0.94 9,711
1.0 0.95 0.90 0.92 7,458
avg/total 0.94 0.94 0.94 17,169

Table 3 displays the confusion matrix show-
ing 8,807 and 2,253 records were correctly clas-
sified as normal and probe, respectively, with 1,072
records being misclassified.

Table 6. Confusion matrix - normal vs. Probe

normal probe

normal 8,807 904
probe 168 2,253

A false alarm rate of 9.31% and a detection
rate of 93.06% were achieved on the test data set
as shown in Table 4. A classification accuracy of
91.16% was achieved with an AUC of 91.88%. The
F1-score resulted in 80.78%.

Table 7. Various metric scores - normal vs. Probe

Accuracy 0.9116390
AUC 0.9187580

False alarm rate 0.0930903
Detection rate 0.9306070

F1 score 0.8078160

Precision, recall, F1-score and support results
are given in Table 8.

Table 8. Precision, recall, F1-score and support -
normal vs. Probe

Precision Recall F1-score Support

0.0 0.98 0.91 0.94 9,711
1.0 0.71 0.93 0.81 2,421

avg/total 0.93 0.91 0.92 12,132

Table 3 shows the confusion matrix whereby
9,694 and 892 records are correctly classified as
normal and R2L, respectively.

Table 9. Confusion matrix - normal vs. R2L

normal R2L

normal 9,694 17
R2L 1,862 892

The different metric scores are listed in Table
10. Results of 0.17% and 32.39% are achieved
for false alarm rate and detection rate, respectively.

APPLYING A NEURAL NETWORK ENSEMBLE TO . . .

Other values of importance are the classification ac-
curacy and AUC with both achieving 89.93%.

Table 10. Various metric scores - normal vs. R2L

Accuracy 0.8492580
AUC 0.6610710

False alarm rate 0.0017506
Detection rate 0.3238930

F1 score 0.4870320

Precision, recall, F1-score and support results
are given in Table 11.

Table 11. Precision, recall, F1-score and support -
normal vs. R2L

Precision Recall F1-score Support

0.0 0.84 1.00 0.91 9,711
1.0 0.98 0.32 0.49 2,754

avg/total 0.87 0.85 0.82 12,465

Table 12 displays the confusion matrix showing
that 9,697 and 44 records were correctly classified
as normal and U2R, respectively, with 170 records
being misclassified.

Table 12. Confusion matrix - normal vs. U2R

normal U2R

normal 9,697 14
U2R 156 44

A false alarm rate of 0.14%, and a detection
rate of 22.00% were achieved on the test data set
as shown in Table 13. A classification accuracy of
98.28% was achieved with an AUC of 60.93%. The
F1-score resulted in 34.11%.

Table 13. Various metric scores - normal vs. U2R

Accuracy 0.9828470
AUC 0.6092790

False alarm rate 0.0014417
Detection rate 0.2200000

F1 score 0.3410850

Precision, recall, F1-score and support results
are given in Table 14.

Table 14. Precision, recall, F1-score and support -
normal vs. U2R

Precision Recall F1-score Support

0.0 0.98 1.00 0.99 9,711
1.0 0.76 0.22 0.34 200

avg/total 0.98 0.98 0.98 9,911

Figure 2 shows the summary of the results in a
graph. Again, we can see the results obtained for
the five measures and the four different types of at-
tacks. As can be seen, the accuracy achieved for
all attack classes are fairly high ranging between
85.93% to 98.28%. However, given the unbalanced
nature of having far less samples for attack classes
R2L and U2R, the AUC and other measures for the
same are rather low. However, the false alarm rate
for R2L and U2R attacks are very low with 0.17%
and 0.14%, respectively.

The class imbalance issue is a well-known
problem [44]. Different imbalance solutions to
this problem fall into two major categories: sam-
pling based approaches and cost function based ap-
proaches. The idea behind cost function based ap-
proaches is that false negatives are scored higher in
terms of the cost function than false positives. The
sampling based approaches consists of undersam-
pling, oversampling and hybrid methods. The idea
behind oversampling and undersampling is that ei-
ther samples are removed from the majority class
or are added to the minority class, respectively. The
hybrid method represents a mix between under- and
oversampling.

5 Conclusion

Different methods for IDSs have been proposed
in the past and many of these systems implement
a data mining approach whereby the data mining
approaches can be classified into clustering and
classification approaches. In this paper, a classifi-
cation model using deep neural networks was in-
vestigated. In particular, the NSL-KDD data set
was used applying a deep neural network ensem-
ble technique. The ensemble technique comprised
of different deep neural network architectures such
as an autoencoder, a deep belief neural network, a
deep neural network, and an extreme learning ma-
chine. The most important measures to evaluate in

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

186 Simone A. Ludwig

Figure 2. Overall performance results

this area are the detection rate and false alarm rate.
The detection rate is the fraction of the difference
between the attack instances that are correctly clas-
sified and the instances that are falsely classified as
normal, and attack instances that are correctly clas-
sified. The false alarm rate is the fraction of de-
tected attacks that are normal and attack instances
that are correctly classified. Other measures con-
sidered are classification accuracy, AUC, precision,
recall, and F-measure.

The results revealed that the accuracy achieved
for all attack classes are fairly high ranging between
85.93% and 98.28%. In addition, the AUC, detec-
tion rate and F1-score are high for the DoS and
Probe attack classes. However, the results for the
attack classes R2L and U2R are rather low. The rea-
son for this is the class inbalance given that there are
only 200 and 2,754 samples in the test set for R2L
and U2R, respectively, compared to the overall to-
tal of 22,543 samples. However, in terms of false
alarm rate, which is an important feature for IDSs,
R2L and U2R achieve good results with values of
0.17% and 0.14%, respectively.

References
[1] Cyber security, http://whatis.techtarget.com/definition/

cybersecurity, last retrieved in 2018.

[2] W. Stallings, Network security essentials: applica-
tions and standards, 5th edition, Pearson, 2013.

[3] Top Free Network-Based Intrusion De-

tection Systems (IDS) for the Enterprise,
https://www.upguard.com/articles/top-free-
network-based-intrusion-detection-systems-ids-
for-the-enterprise, last retrieved in 2018.

[4] K. Scarfone and P. Mell, Guide to Intrusion De-
tection and Prevention Systems Recommendations
(IDPS), National Institute of Standards and Technol-
ogy, NIST Spec. Publ. 800-97, 2007.

[5] B. C. Rhodes, J. A. Mahaffey, J. D. Cannady, Mul-
tiple self-organizing maps for intrusion detection,
23rd national information systems security confer-
ence, 2000.

[6] P. O. Kane, S. Sezer, K. McLaughlin, Obfuscation:
the hidden malware, IEEE Security & Privacy 9 (5),
41-47, 2011.

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee,
Bothunter: Detecting malware infection through
ids-driven dialog correlation, in: Proceedings of
16th USENIX Security Symposium, USENIX As-
sociation, 2007.

[8] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al.,
Botminer: Clustering analysis of network trace
for protocol-and structure-independent botnet detec-
tion., in: USENIX Security Symposium, pp. 139-
154, 2008.

[9] G. Gu, J. Zhang, W. Lee, Botsniffer: Detecting
botnet command and control channels in network
trace, in: Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium
(NDSS’08), 2008.

[10] V. Julien, Suricata ids, Tech. rep., Open Infor-
mation Security Foundation (OISF), available on-
line: http://suricata-ids.org/download/, last retrieved
in 2018.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

187Simone A. Ludwig

Figure 2. Overall performance results

this area are the detection rate and false alarm rate.
The detection rate is the fraction of the difference
between the attack instances that are correctly clas-
sified and the instances that are falsely classified as
normal, and attack instances that are correctly clas-
sified. The false alarm rate is the fraction of de-
tected attacks that are normal and attack instances
that are correctly classified. Other measures con-
sidered are classification accuracy, AUC, precision,
recall, and F-measure.

The results revealed that the accuracy achieved
for all attack classes are fairly high ranging between
85.93% and 98.28%. In addition, the AUC, detec-
tion rate and F1-score are high for the DoS and
Probe attack classes. However, the results for the
attack classes R2L and U2R are rather low. The rea-
son for this is the class inbalance given that there are
only 200 and 2,754 samples in the test set for R2L
and U2R, respectively, compared to the overall to-
tal of 22,543 samples. However, in terms of false
alarm rate, which is an important feature for IDSs,
R2L and U2R achieve good results with values of
0.17% and 0.14%, respectively.

References
[1] Cyber security, http://whatis.techtarget.com/definition/

cybersecurity, last retrieved in 2018.

[2] W. Stallings, Network security essentials: applica-
tions and standards, 5th edition, Pearson, 2013.

[3] Top Free Network-Based Intrusion De-

tection Systems (IDS) for the Enterprise,
https://www.upguard.com/articles/top-free-
network-based-intrusion-detection-systems-ids-
for-the-enterprise, last retrieved in 2018.

[4] K. Scarfone and P. Mell, Guide to Intrusion De-
tection and Prevention Systems Recommendations
(IDPS), National Institute of Standards and Technol-
ogy, NIST Spec. Publ. 800-97, 2007.

[5] B. C. Rhodes, J. A. Mahaffey, J. D. Cannady, Mul-
tiple self-organizing maps for intrusion detection,
23rd national information systems security confer-
ence, 2000.

[6] P. O. Kane, S. Sezer, K. McLaughlin, Obfuscation:
the hidden malware, IEEE Security & Privacy 9 (5),
41-47, 2011.

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee,
Bothunter: Detecting malware infection through
ids-driven dialog correlation, in: Proceedings of
16th USENIX Security Symposium, USENIX As-
sociation, 2007.

[8] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al.,
Botminer: Clustering analysis of network trace
for protocol-and structure-independent botnet detec-
tion., in: USENIX Security Symposium, pp. 139-
154, 2008.

[9] G. Gu, J. Zhang, W. Lee, Botsniffer: Detecting
botnet command and control channels in network
trace, in: Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium
(NDSS’08), 2008.

[10] V. Julien, Suricata ids, Tech. rep., Open Infor-
mation Security Foundation (OISF), available on-
line: http://suricata-ids.org/download/, last retrieved
in 2018.

APPLYING A NEURAL NETWORK ENSEMBLE TO . . .

[11] M. Roesch, Snort: Lightweight intrusion detection
for networks., in: LISA, pp. 229-238, 1999.

[12] V. Paxson, Bro: a system for detecting network
intruders in real-time, Computer networks 31 (23),
2435-2463, 1999.

[13] D. M. Chess, S. R. White, Undetectable computer
viruses, in: Virus Bulletin, pp. 107-115, 2000.

[14] R. Vaarandi, K. Podins, Network ids alert classifi-
cation with frequent itemset mining and data cluster-
ing, in: Network and Service Management (CNSM),
2010 International Conference on, IEEE, pp. 451-
456, 2010.

[15] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani,
A Detailed Analysis of the KDD CUP 99 Data Set,
IEEE Symposium on Computational Intelligence for
Security and Defense Applications (CISDA), 2009.

[16] S. A. Ludwig, Intrusion Detection of Multiple At-
tack Classes using a Deep Neural Net Ensemble,
IEEE Symposium Series on Computational Intelli-
gence (SSCI), Honolulu, HI, USA, October 2017.

[17] I. Chairunnisa, Lukas, and H. D. Widiputra. Clus-
tering base intrusion detection for network profil-
ing using k-means, ecm and k-nearest neighbor al-
gorithms. In Konferensi Nasional Sistem dan Infor-
matika, 2009.

[18] S. Zanero and S. M. Savaresi. Unsupervised learn-
ing techniques for an intrusion detection system. In
SAC ’04: Proceedings of the 2004 ACM symposium
on Applied computing, pages 412-419, New York,
NY, USA, 2004.

[19] A. Ali, A. Saleh, and T. Ramdan. Multilayer per-
ceptrons networks for an intelligent adaptive intru-
sion detection system. International Journal of Com-
puter Science and Network Security, 10(2), 2010.

[20] N. Gornitz, M. Kloft, K. Rieck, and U. Brefeld.
Active learning for network intrusion detection. In
2nd ACM workshop on security and artificial intel-
ligence, pp. 47-54, 2009.

[21] M. Kloft, U. Brefeld, P. Dussel, C. Gehl, and P.
Laskov. Automatic feature selection for anomaly de-
tection. In AISEC 2008, pp. 71-76, 2008.

[22] R. Chitrakar and C. Huang, Selection of candidate
support vectors in incremental SVM for network in-
trusion detection, Computers & Security, vol. 45, pp.
231-241, 2014.

[23] F. Giroire, J. Chandrashekar, G. Iannaccone, K. Pa-
pagiannaki, E. M. Schooler, and N. Taft. The cubi-
cle vs. the coffee shop: Behavioral modes in enter-
prise end-users. In Proceedings of the 2008 Passive
and Active Measurement Conference, pages 202-
211, Springer, 2008.

[24] M. Pillai, J. Eloff, and H. Venter. An approach
to implement a network intrusion detection system
using genetic algorithms. In Proceedings of South
African Institute of Computer Scientists and Infor-
mation Technologists, pp. 221-228, Western Cape,
South Africa, 2004.

[25] G. E. Hinton, S. Osindero, and Y.-W. Teh, A fast
learning algorithm for deep belief nets, Neural com-
putation, vol. 18, pp. 1527-1554, 2006.

[26] R. Salakhutdinov and G. E. Hinton, Deep boltz-
mann machines, International conference on artifi-
cial intelligence and statistics, 2009.

[27] M. Z. Alom, V. Bontupalli and T. M. Taha, Intru-
sion detection using deep belief networks, 2015 Na-
tional Aerospace and Electronics Conference (NAE-
CON), Dayton, OH, 2015.

[28] K. Alrawashdeh and C. Purdy, Toward an On-
line Anomaly Intrusion Detection System Based
on Deep Learning, 2016 15th IEEE International
Conference on Machine Learning and Applications
(ICMLA), Anaheim, CA, 2016.

[29] Y. Li, R. Ma, R. Jiao, A Hybrid Malicious Code
Detection Method based on Deep Learning, Interna-
tional Journal of Security and Its Applications, vol.
9, no. 5, 2015.

[30] Y. Liu and X. Zhang, Intrusion Detection Based
on IDBM, 2016 IEEE 14th Intl Conf on Depend-
able, Autonomic and Secure Computing, Auckland,
2016.

[31] S. Potluri and C. Diedrich, Accelerated deep neural
networks for enhanced Intrusion Detection System,
2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA),
Berlin, 2016.

[32] T. A. Tang, L. Mhamdi, D. McLernon, S. A. Raza
Zaidi, M. Ghogho, Deep learning approach for Net-
work Intrusion Detection in Software Defined Net-
working, 2016 International Conference on Wire-
less Networks and Mobile Communications (WIN-
COM), Fez, Morocco, 2016.

[33] W. Lee, S. J. Stolfo, A framework for constructing
features and models for intrusion detection systems,
ACM Transactions on Information and System Se-
curity 3:227-261, 2000.

[34] B. V. Dasarathy and B. V. Sheela, Composite clas-
sifier system design: concepts and methodology,
Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713,
1979.

[35] L. K. Hansen and P. Salamon, Neural network en-
sembles, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 10, pp. 993-1001,
1990.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

188 Simone A. Ludwig

[36] R. E. Schapire, The Strength of Weak Learnability,
Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.

[37] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, A Deep
Learning Approach for Network Intrusion Detec-
tion System. In Proceedings of the 9th EAI Interna-
tional Conference on Bio-inspired Information and
Communications Technologies, Brussels, Belgium,
2016.

[38] D. P. Kingma, J. Ba, Adam: A Method for
Stochastic Optimization, Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR), 2014.

[39] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme
learning machine: theory and applications, Neuro-
computing, vol. 70, no. 1-3, pp. 489-501, 2006.

[40] G.-B. Huang, L. Chen, and C.-K. Siew, Universal
approximation using incremental constructive feed-

forward networks with random hidden nodes, IEEE
Transactions on Neural Networks, vol. 17, no. 4, pp.
879-892, 2006.

[41] A. Ozgur, H. Erdem, A review of KDD99 dataset
usage in intrusion detection and machine learning
between 2010 and 2015 (Version 1), PeerJ Preprints,
2016.

[42] DARPA Intrusion Detection Data Set, 1998.

[43] R. Sommer, V. Paxson, Outside the closed world:
On using machine learning for network intrusion de-
tection, Proceedings of the 2010 IEEE Symposium
on Security and Privacy, IEEE Computer Society,
Washington, DC, USA, 2010.

[44] N. V. Chawla, N. Japkowicz, A. Kotcz, Editorial:
Special Issue on Learning from Imbalanced Data
Sets, SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 1-6,
2014.

Simone A. Ludwig is a Professor of
Computer Science at North Dakota
State University, USA. Prior to joining
NDSU she worked at the University
of Saskatchewan (Canada), Concor-
dia University (Canada), Cardiff Uni-
versity (UK) and Brunel University
(UK). Dr. Ludwig received her Ph.D.
degree and M.Sc. degree with distinc-

tion from Brunel University in 2004 and 2000, respectively.
Before starting her academic career she worked several years
in the software industry. Dr. Ludwig’s research interests lie
in the area of computational intelligence including swarm
intelligence, evolutionary computation, neural networks, and
fuzzy reasoning. Example application areas are data mining
(including big data), image processing, intrusion detection,
cryptography, and cloud computing.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.01.20 13:03 UTC

