PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additive manufacturing with geopolymer foams: A critical review of current progress

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geopolymer foam is a lightweight and environmentally friendly material that utilizes byproducts as raw materials. It consists of precursors, alkaline or acidic solutions, and foaming agents, with the option to incorporate stabilizing agents. The presence of dispersed pores significantly enhances its insulation properties, resulting in a reduced overall density, improved mechanical energy absorption, increased fire resistance, and greater durability. As an innovative alternative to conventional insulation products, geopolymer foam not only enhances overall building performance but also allows for the creation of complex shapes through additive manufacturing (AM), which is particularly beneficial in the architecture and aerospace sectors. To further advance this innovative material, this critical review summarizes recent experimental studies on geopolymer foam mortar in 3D printing, examining selected peer-reviewed literature to evaluate the type of material formulations and performance characteristics. By identifying key trends, strengths, and research gaps, this study provides a comprehensive understanding of current progress and future directions in the development of sustainable, high-performance geopolymer foam materials for AM. This technology effectively reduces energy consumption in construction and lowers carbon dioxide emissions by incorporating industrial waste, thereby supporting sustainable development goals.
Wydawca
Rocznik
Strony
115--132
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, National Central University Taoyuan, Taiwan
  • Department of Civil Engineering, National Central University Taoyuan, Taiwan
autor
  • Department of Civil Engineering, National Ilan University Yilan, Taiwan
autor
  • Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology Krakow, Poland
Bibliografia
  • [1] Chen, C., Xu, R., Tong, D., Qin, X., Cheng, J., Liu, J., et al., A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries, Environ. Res. Lett., 2022, 17(4): 044007. doi:10.1088/1748-9326/ac48b5
  • [2] He, Z., Zhu, X., Wang, J., Mu, M., Wang, Y., Comparison of CO2 emissions from OPC and recycled cement production, Constr. Build. Mater., 2019, 211: 965–973. doi:10.1016/j.conbuildmat.2019.03.289
  • [3] Zhang, Z., Provis, J.L., Reid, A., Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater., 2014, 56: 113–127. doi:10.1016/j.conbuildmat.2014.01.081
  • [4] Alves, L.A., Nogueira, A., Vazquez, E., De Barros, S., A bibliographic historical analysis on geopolymer as a substitute for Portland cement, KEM, 2020, 834: 127–131. doi:10.4028/www.scientific.net/KEM.834.127
  • [5] Davidovits, J., Geopolymers and geopolymeric materials, J. Therm. Anal., 1989, 35(2): 429–441. doi:10.1007/BF01904446
  • [6] Davidovits, J., Geopolymer cement a review, published in geopolymer science and technics, Tech. Pap., 2013, 21: 1–11
  • [7] Aslan, S., Erkan, İ.H., The effects of fly ash, blast furnace slag, and limestone powder on the physical and mechanical properties of geopolymer mortar, Appl. Sci., 2024, 14(2): 553. doi:10.3390/app14020553
  • [8] Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. doi:10.1016/j.conbuildmat.2014.01.040
  • [9] Bleszynski, R., Hooton, R.D., Thomas, M.D., Rogers, C.A., Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies, ACI Mater. J.-Am. Concr. Inst., 2002, 99(5): 499–508. doi:10.14359/12329
  • [10] Mayhoub, O.A., Nasr, E.S.A., Ali, Y., Kohail, M., Properties of slag based geopolymer reactive powder concrete, Ain Shams Eng. J., 2021, 12(1): 99–105. doi:10.1016/j.asej.2020.08.013
  • [11] Liu, Y.L., Liu, C., Qian, L.P., Wang, A.G., Sun, D.S., Guo, D., Foaming processes and properties of geopolymer foam concrete: Effect of the activator, Constr. Build. Mater., 2023, 391: 131830. doi:10.1016/j.conbuildmat.2023.131830
  • [12] Wang, X., Cui, H., Zhou, H., Song, T., Zhang, H., Liu, H., et al., Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression, Constr. Build. Mater., 2023, 404: 133296. doi:10.1016/j.conbuildmat.2023.133296
  • [13] Zhang, X., Zhang, X., Li, X., Tian, D., Ma, M., Wang, T., Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems, Ceram. Int., 2022, 48(13): 18348–18360. doi:10.1016/j.ceramint.2022.03.094
  • [14] Le, V.S., Louda, P., Tran, H.N., Nguyen, P.D., Bakalova, T., Ewa Buczkowska, K., et al., Study on temperature-dependent properties and fire resistance of metakaolin-based geopolymer foams, Polymers, 2020, 12(12): 2994. doi:10.3390/polym12122994
  • [15] Wang, Z., Liu, S., Wu, K., Li, M., Zhang, X., Huang, L., Durability against dry–wet and freeze–thaw cycles of alkali residue-based foamed concrete, Mater. Struct., 2024, 57(3): 51. doi:10.1617/s11527-024-02318-w
  • [16] Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Progress, current thinking and challenges in geopolymer foam concrete technology, Cem. Concr. Compos., 2021, 116: 103886. doi:10.1016/j.cemconcomp.2020.103886
  • [17] Alghamdi, H., Neithalath, N., Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials, Cem. Concr. Compos., 2019, 104: 103377. doi:10.1016/j.cemconcomp.2019.103377
  • [18] Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P., Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders, Mater. Des., 2016, 100: 102–109. doi:10.1016/j.matdes.2016.03.097
  • [19] Bedarf, P., Szabo, A., Zanini, M., Dillenburger, B., Robotic 3D printing of geopolymer foam for lightweight and insulating building elements, 3D Print. Addit. Manuf., 2024, 11(1): 1–9. doi:10.1089/3dp.2023.0183
  • [20] Novais, R.M., Pullar, R.C., Labrincha, J.A., Geopolymer foams: An overview of recent advancements, Prog. Mater. Sci., 2020, 109: 100621. doi:10.1016/j.pmatsci.2019.100621
  • [21] Bedarf, P., Dutto, A., Zanini, M., Dillenburger, B., Foam 3D printing for construction: A review of applications, materials, and processes, Autom. Constr., 2021, 130: 103861. doi:10.1016/j.autcon.2021.103861
  • [22] Ismail, A.H., Kusbiantoro, A., Tajunnisa, Y., Ekaputrc, J.J., Laory, I., A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal, Clean. Mater., 2024, 13: 100259. doi:10.1016/j.clema.2024.100259
  • [23] Davidovits, J., Inorganic polymeric new materials. J. Therm. Anal., 1991, 37: 1633–1656
  • [24] Wang, Y.S., Alrefaei, Y., Dai, J.G., Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review, Front. Mater., 2019, 6: 106. doi:10.3389/fmats.2019.00106
  • [25] Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. doi:10.1016/j.jclepro.2016.03.019
  • [26] Papa, E., Medri, V., Kpogbemabou, D., Morinière, V., Laumonier, J., Vaccari, A., et al., Porosity and insulating properties of silica-fume based foams, Energy Build., 2016, 131: 223–232. doi:10.1016/j.enbuild.2016.09.031
  • [27] Vanathi, V., Nagarajan, V., Jagadesh, P., Influence of sugarcane bagasse ash on mechanical properties of geopolymer concrete, J. Build. Eng., 2023, 79: 107836. doi:10.1016/j.jobe.2023.107836
  • [28] Kaur, K., Singh, J., Kaur, M., Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator, Constr. Build. Mater., 2018, 169: 188–192. doi:10.1016/j.conbuildmat.2018.02.200
  • [29] Hamada, H.M., Alattar, A.A., Yahaya, F.M., Muthusamy, K., Tayeh, B.A., Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder, Phys. Chem. Earth, Parts A/B/C, 2021, 121: 102977. doi:10.1016/j.pce.2021.102977
  • [30] Nduka, D.O., Olawuyi, B.J., Ajao, A.M., Okoye, V.C., Okigbo, O.M., Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete, Clean. Eng. Technol., 2022, 11: 100583. doi:10.1016/j.clet.2022.100583
  • [31] Rao, F., Liu, Q., Geopolymerization and its potential application in mine tailings consolidation: a review, Miner. Process. Extr. Metall. Rev., 2015, 36(6): 399–409. doi:10.1080/08827508.2015.1055625
  • [32] Ahmari, S., Zhang, L., Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 2013, 44: 743–750. doi:10.1016/j.conbuildmat.2013.03.075
  • [33] Burduhos Nergis, D.D., Vizureanu, P., Sandu, A.V., Burduhos Nergis, D.P., Bejinariu, C., XRD and TG-DTA study of new phosphate-based geopolymers with coal ash or metakaolin as aluminosilicate source and mine tailings addition, Materials, 2021, 15(1): 202. doi:10.3390/ma15010202
  • [34] Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S., Geopolymer technology: the current state of the art, J. Mater. Sci., 2007, 42(9): 2917–2933, 10.1007/s10853-006-0637-z
  • [35] ASTM International. (2022). ASTM C618-22: Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Pennsylvania. doi:10.1520/C0618-22
  • [36] McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A., Corder, G.D., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 2011, 19(9–10): 1080–1090. doi:10.1016/j.jclepro.2011.02.010
  • [37] Su, L., Fu, G., Liang, B., Sun, Q., Zhang, X., Mechanical properties and microstructure evaluation of fly ash - Slag geopolymer foaming materials, Ceram. Int., 2022, 48(13): 18224–18237. doi:10.1016/j.ceramint.2022.03.081
  • [38] Etli, S., Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate, J. Clean. Prod., 2023, 384: 135590. doi:10.1016/j.jclepro.2022.135590
  • [39] Amran, M., Debbarma, S., Ozbakkaloglu, T., Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Constr. Build. Mater., 2021, 270: 121857. doi:10.1016/j.conbuildmat.2020.121857
  • [40] Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W., Aguiar, J.B., Mix design, properties and cost analysis of fly ash-based geopolymer foam, Constr. Build. Mater., 2015, 80: 18–30. doi:10.1016/j.conbuildmat.2015.01.063
  • [41] Wang, G.C., The utilization of slag in civil infrastructure construction, Elsevier, Woodhead publishing, Duxford, UK, 2016. doi:10.1016/C2014-0-03995-0
  • [42] ASTM International. (2018). ASTM C989/C989M-18a: Specification for slag cement for use in concrete and mortars, 2013. Pennsylvania. doi:10.1520/C0989_C0989M-18A
  • [43] Khater, H.M., Effect of silica fume on the characterization of the geopolymer materials, Int. J. Adv. Struct. Eng., 2013, 5(1): 12. doi:10.1186/2008-6695-5-12
  • [44] Jena, S., Panigrahi, R., Sahu, P. (2019). Effect of Silica Fume on the Properties of Fly Ash Geopolymer Concrete. In B. B. Das & N. Neithalath (Eds.), Lecture notes in Civil Engineering 25. Sustainable Construction and Building Materials, Springer Nature Singapore, (pp. 145–153). doi:10.1007/978-981-13-3317-0_13
  • [45] Shakouri, S., Bayer, Ö., Erdoğan, S.T., Development of silica fume-based geopolymer foams, Constr. Build. Mater., 2020, 260: 120442. doi:10.1016/j.conbuildmat.2020.120442
  • [46] Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H., Mohammed, B.S., Effects of alkaline solution on properties of the HCFA geopolymer mortars, Procedia Eng., 2016, 148: 710–717. doi:10.1016/j.proeng.2016.06.581
  • [47] Esparham, A., Moradikhou, A.B., Jamshidi Avanaki, M., Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concrete, Jcema, 2020, 4(2): 115–123. doi:10.22034/jcema.2020.224071.1018
  • [48] Ma, C., Zhao, B., Guo, S., Long, G., Xie, Y., Properties and characterization of green one-part geopolymer activated by composite activators, J. Clean. Prod., 2019, 220: 188–199. doi:10.1016/j.jclepro.2019.02.159
  • [49] Chen, B., Wang, J., Zhao, J., Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali‐activated slag paste, Adv. Mater. Sci. Eng., 2021, 2021(1): 6658588. doi:10.1155/2021/6658588
  • [50] Le-Ping, L., Xue-Min, C., Shu-Heng, Q., Jun-Li, Y., Lin, Z., Preparation of phosphoric acid-based porous geopolymers, Appl. Clay Sci., 2010, 50(4): 600–603. doi:10.1016/j.clay.2010.10.004
  • [51] Zhang, B., Guo, H., Yuan, P., Deng, L., Zhong, X., Li, Y., et al., Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration, Cem. Concr. Compos., 2020, 110: 103601. doi:10.1016/j.cemconcomp.2020.103601
  • [52] Pu, S., Zhu, Z., Song, W., Huo, W., Zhang, J., Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study, Constr. Build. Mater., 2021, 299: 123947. doi:10.1016/j.conbuildmat.2021.123947
  • [53] Lin, H., Liu, H., Li, Y., Kong, X., Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures, Cem. Concr. Res., 2021, 144: 106425. doi:10.1016/j.cemconres.2021.106425
  • [54] Song, Y., Xue, C., Guo, W., Bai, Y., Shi, Y., Zhao, Q., Foamed geopolymer insulation materials: Research progress on insulation performance and durability, J. Clean. Prod., 2024, 444: 140991. doi:10.1016/j.jclepro.2024.140991
  • [55] Kočí, V., Černý, R., Directly foamed geopolymers: A review of recent studies, Cem. Concr. Compos., 2022, 130: 104530. doi:10.1016/j.cemconcomp.2022.104530
  • [56] Huang, Z., Zhang, T., Wen, Z., Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes, Constr. Build. Mater., 2015, 79: 390–396. doi:10.1016/j.conbuildmat.2015.01.051
  • [57] Medri, V., Papa, E., Dedecek, J., Jirglova, H., Benito, P., Vaccari, A., et al., Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates, Ceram. Int., 2013, 39(7): 7657–7668. doi:10.1016/j.ceramint.2013.02.104
  • [58] Gualtieri, M.L., Cavallini, A., Romagnoli, M., Interactive powder mixture concept for the preparation of geopolymers with fine porosity, J. Eur. Ceram. Soc., 2016, 36(10): 2641–2646. doi:10.1016/j.jeurceramsoc.2016.03.030
  • [59] Pantongsuk, T., Kittisayarm, P., Muenglue, N., Benjawan, S., Thavorniti, P., Tippayasam, C., et al., Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams, Mater. Today Commun., 2021, 26: 102149. doi:10.1016/j.mtcomm.2021.102149
  • [60] Huang, Y., Gong, L., Shi, L., Cao, W., Pan, Y., Cheng, X., Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material, Energy Build., 2018, 168: 9–18. doi:10.1016/j.enbuild.2018.02.043
  • [61] Yan, S., Zhang, F., Liu, J., Ren, B., He, P., Jia, D., et al., Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification, J. Clean. Prod., 2019, 227: 483–494. doi:10.1016/j.jclepro.2019.04.185
  • [62] Novais, R.M., Ascensão, G., Ferreira, N., Seabra, M.P., Labrincha, J.A., Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams, Ceram. Int., 2018, 44(6): 6242–6249. doi:10.1016/j.ceramint.2018.01.009
  • [63] Hajimohammadi, A., Ngo, T., Mendis, P., How does aluminium foaming agent impact the geopolymer formation mechanism?, Cem. Concr. Compos., 2017, 80: 277–286. doi:10.1016/j.cemconcomp.2017.03.022
  • [64] Anggarini, U., Pratapa, S., Purnomo, V., Sukmana, N.C., A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis, Open. Chem., 2019, 17(1): 629–638. doi:10.1515/chem-2019-0073
  • [65] Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., et al., Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams, Materials, 2021, 14(17): 5090. doi:10.3390/ma14175090
  • [66] Bai, C., Colombo, P., High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant, Ceram. Int., 2017, 43(2): 2267–2273. doi:10.1016/j.ceramint.2016.10.205
  • [67] Bai, C., Ni, T., Wang, Q., Li, H., Colombo, P., Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, J. Eur. Ceram. Soc., 2018, 38(2): 799–805. doi:10.1016/j.jeurceramsoc.2017.09.021
  • [68] Korat, L., Ducman, V., The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams, Cem. Concr. Compos., 2017, 80: 168–174. doi:10.1016/j.cemconcomp.2017.03.010
  • [69] Liu, Z., Shao, N.N., Qin, J.F., Kong, F.L., Wang, C.X, Wang, D.M., Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash, J. Cent. South. Univ., 2015, 22(9): 3633–3640. doi:10.1007/s11771-015-2904-0
  • [70] Masi, G., Rickard, W.D., Vickers, L., Bignozzi, M.C., Van Riessen, A., A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 2014, 40(9): 13891–13902. doi:10.1016/j.ceramint.2014.05.108
  • [71] Guo, S., Wang, W., Jia, Z., Qi, X., Zhu, H., Liu, X., Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete, Constr. Build. Mater., 2023, 362: 129723. doi:10.1016/j.conbuildmat.2022.129723
  • [72] Tiyasangthong, S., Yoosuk, P., Krosoongnern, K., Krittacom, B., Nachaisit, P., Suksiripattanapong, C., Unit weight, strengths and thermal conductivity of cellular lightweight fly ash geopolymer mortar reinforced with polyvinyl alcohol, Civ. Eng. Archit., 2022, 10(7): 2943–2952. doi:10.13189/cea.2022.100713
  • [73] Nodehi, M., A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer, Innov. Infrastruct. Solut., 2021, 6(4): 231. doi:10.1007/s41062-021-00595-w
  • [74] Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., Mo, K.H., Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energy Build., 2014, 72: 238–245. doi:10.1016/j.enbuild.2013.12.029
  • [75] Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates, Constr. Build. Mater., 2020, 264: 120713. doi:10.1016/j.conbuildmat.2020.120713
  • [76] Wang, J., Li, X., Hu, Y., Li, Y., Hu, P., Zhao, Y., Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres, Constr. Build. Mater., 2024, 411: 134698. doi:10.1016/j.conbuildmat.2023.134698
  • [77] Zhang, N., Wang, B., Yue, D., Pan, D., Wang, H., Li, J., et al., Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse, Process. Saf. Environ. Prot., 2023, 170: 536–544. doi:10.1016/j.psep.2022.12.011
  • [78] Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., Zhou, G., Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers, Constr. Build. Mater., 2020, 251: 118960. doi:10.1016/j.conbuildmat.2020.118960
  • [79] Mackenzie, K.J.D., Welter, M., Geopolymer (aluminosilicate) composites: synthesis, properties and applications, In Advances in Ceramic Matrix Composites, Elsevier, Woodhead publishing, Cambridge, UK, 2014, pp. 445–470. doi:10.1533/9780857098825.3.445
  • [80] Xu, H., Van Deventer, J.S.J., The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 2000, 59(3): 247–266. doi:10.1016/S0301-7516(99)00074-5
  • [81] Li, T., Huang, F., Zhu, J., Tang, J., Liu, J., Effect of foaming gas and cement type on the thermal conductivity of foamed concrete, Constr. Build. Mater., 2020, 231: 117197. doi:10.1016/j.conbuildmat.2019.117197
  • [82] Bai, C., Colombo, P., Processing, properties and applications of highly porous geopolymers: A review, Ceram. Int., 2018, 44(14): 16103–16118. doi:10.1016/j.ceramint.2018.05.219
  • [83] Sharma, S., Medpelli, D., Chen, S., Seo, D.K., Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production, RSC Adv., 2015, 5(80): 65454–65461. doi:10.1039/C5RA01823D
  • [84] Zhang, Z., Provis, J.L., Reid, A., Wang, H., Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 2015, 62: 97–105. doi:10.1016/j.cemconcomp.2015.03.013
  • [85] Franchin, G., Scanferla, P., Zeffiro, L., Elsayed, H., Baliello, A., Giacomello, G., et al., Direct ink writing of geopolymeric inks, J. Eur. Ceram. Soc., 2017, 37(6): 2481–2489. doi:10.1016/j.jeurceramsoc.2017.01.030
  • [86] Barve, P., Bahrami, A., Shah, S., Geopolymer 3D printing: a comprehensive review on rheological and structural performance assessment, printing process parameters, and microstructure, Front. Mater., 2023, 10: 1241869. doi:10.3389/fmats.2023.1241869
  • [87] Muthukrishnan, S., Ramakrishnan, S., Sanjayan, J., Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing, Constr. Build. Mater., 2020, 265: 120786. doi:10.1016/j.conbuildmat.2020.120786
  • [88] Wu, Y., Wang, J.Y., Monteiro, P.J., Zhang, M.H., Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings, Constr. Build. Mater., 2015, 87: 100–112. doi:10.1016/j.conbuildmat.2015.04.004
  • [89] Góra, M., Bańkosz, M., Tyliszczak, B., Use of innovative methods to produce highly insulating walls using 3D-printing technology, Materials, 2024, 17(16): 3990. doi:10.3390/ma17163990
  • [90] Ziejewska, C., Marczyk, J., Korniejenko, K., Bednarz, S., Sroczyk, P., et al., 3D printing of concrete-geopolymer hybrids, Materials, 2022, 15(8): 2819. doi:10.3390/ma15082819
  • [91] Zoude, C., Gremillard, L., Prud’Homme, E., Combination of chemical foaming and direct ink writing for lightweight geopolymers, Open. Ceram., 2023, 16: 100478. doi:10.1016/j.oceram.2023.100478
  • [92] Ma, S., Jiang, Y., Fu, S., He, P., Sun, C., Duan, X., et al., 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures, J. Adv. Ceram., 2023, 12(3): 510–525. doi:10.26599/JAC.2023.9220700
  • [93] Ulubeyli, S., Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies, Acta Astronaut., 2022, 195: 318–343. doi:10.1016/j.actaastro.2022.03.033
  • [94] Xu, F., Gu, G., Zhang, W., Wang, H., Huang, X., Zhu, J., Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method, Ceram. Int., 2018, 44(16): 19989–19997. doi:10.1016/j.ceramint.2018.07.267
  • [95] Petlitckaia, S., Poulesquen, A., Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide, Ceram. Int., 2019, 45(1): 1322–1330. doi:10.1016/j.ceramint.2018.10.021
  • [96] Sanjayan, J.G., Nazari, A., Chen, L., Nguyen, G.H., Physical and mechanical properties of lightweight aerated geopolymer, Constr. Build. Mater., 2015, 79: 236–244. doi:10.1016/j.conbuildmat.2015.01.043
  • [97] Jaya, N.A., Yun-Ming, L., Cheng-Yong, H., Abdullah, M.M.A.B., Hussin, K., Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer, Constr. Build. Mater., 2020, 247: 118641. doi:10.1016/j.conbuildmat.2020.118641
  • [98] Luna-Galiano, Y., Leiva, C., Arenas, C., Fernández-Pereira, C., Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties, J. Non-Cryst. Solids, 2018, 500: 196–204. doi:10.1016/j.jnoncrysol.2018.07.069
  • [99] Hajimohammadi, A., Ngo, T., Mendis, P., Sanjayan, J., Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des., 2017, 120: 255–265. doi:10.1016/j.matdes.2017.02.026
  • [100] Senff, L., Novais, R.M., Carvalheiras, J., Labrincha, J.A., Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production, Constr. Build. Mater., 2020, 239: 117805. doi:10.1016/j.conbuildmat.2019.117805
  • [101] Ducman, V., Korat, L., Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Mater. Charact., 2016, 113: 207–213. doi:10.1016/j.matchar.2016.01.019
  • [102] Shen, S., Tian, J., Zhu, Y., Zhang, X., Hu, P., Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: Effects of metallic aluminium and reclaimed materials, Constr. Build. Mater., 2022, 328: 127083. doi:10.1016/j.conbuildmat.2022.127083
  • [103] Bai, C., Zheng, J., Rizzi, G.A., Colombo, P., Low-temperature fabrication of SiC/geopolymer cellular composites, Compos. Part. B: Eng., 2018, 137: 23–30. doi:10.1016/j.compositesb.2017.11.013
  • [104] Peng, X., Li, H., Shuai, Q., Wang, L., Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials, 2020, 13(3): 535. doi:10.3390/ma13030535
  • [105] Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X., Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des. (1980-2015), 2015, 65: 529–533. doi:10.1016/j.matdes.2014.09.024
  • [106] Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete, Constr. Build. Mater., 2021, 271: 121850. doi:10.1016/j.conbuildmat.2020.121850
  • [107] Sornlar, W., Wannagon, A., Supothina, S., Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers, J. Build. Eng., 2021, 44: 103273. doi:10.1016/j.jobe.2021.103273
  • [108] Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S., Rui, Y., Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material, J. Build. Eng., 2018, 20: 21–29. doi:10.1016/j.jobe.2018.06.002
  • [109] Cui, Y., Wang, D., Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymers, Adv. Mater. Sci. Eng., 2019, 2019: 1–10. doi:10.1155/2019/3202794
  • [110] Shao, N.N., Zhang, Y.B., Liu, Z., Wang, D.M., Zhang, Z.T., Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength, Constr. Build. Mater., 2018, 185: 567–573. doi:10.1016/j.conbuildmat.2018.07.077
  • [111] Wongkvanklom, A., Posi, P., Kasemsiri, P., Sata, V., Cao, T., Chindaprasirt, P., Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete, Eng. Appl. Sci. Res., 2021, 48: 487496. doi:10.14456/EASR.2021.51
  • [112] Bai, C., Franchin, G., Elsayed, H., Zaggia, A., Conte, L., Li, H., et al., High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res., 2017, 32(17): 3251–3259. doi:10.1557/jmr.2017.127
  • [113] Shilar, F.A., Ganachari, S.V., Patil, V.B., Bhojaraja, B.E., Khan, T.Y., Almakayeel, N., A review of 3D printing of geopolymer composites for structural and functional applications, Constr. Build. Mater., 2023, 400: 132869. doi:10.1016/j.conbuildmat.2023.132869
  • [114] Lazorenko, G., Kasprzhitskii, A., Geopolymer additive manufacturing: A review, Addit. Manuf., 2022, 55: 102782. doi:10.1016/j.addma.2022.102782
  • [115] Raza, M.H., Zhong, R.Y., Khan, M., Recent advances and productivity analysis of 3D printed geopolymers, Addit. Manuf., 2022, 52, 102685. doi:10.1016/j.addma.2022.102685
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa007eb6-2521-48f1-b666-ab5f8422d839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.