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Abstract. An analysis has been performed to study the problem of the thermal performance 

of a nonlinear problem of the porous fin with temperature-dependent internal heat genera-

tion. Highly accurate semi-analytical methods called the collocation method (CM) and the 

homotopy perturbation method (HPM) are introduced and then are used to obtain a nonlin-

ear temperature distribution equation in a longitudinal porous fin. This study is performed 

using passage velocity from the Darcy’s model to formulate the heat transfer equation 

through porous media. The heat generation is assumed to be a function of temperature. 

The effects of the natural convection parameter Nc, internal heat generation εg, porosity Sh 

and generation number G parameter on the dimensionless temperature distribution are 

discussed. Also, numerical calculations called the fourth order Runge-Kutta method were 

carried out for the various parameters entering into the problem for validation. Results 

reveal that analytical approaches are very effective and convenient. Also it is found 

that these methods can achieve more suitable results compared to numerical methods. 

 

Keywords: collocation method, homotopy perturbation method, porous fin, temperature- 

-dependent heat generation 

1. Introduction 

Fins are frequently used in many heat transfer applications to improve perform-

ance. On the other hand, for many years, high rate of heat transfer with reduced 

size and cost of fins is the main target for a number of engineering applications 

such as heat exchangers, economizers, super heaters, conventional furnaces, gas 

turbines, etc. Some engineering applications such as airplane and motorcycle also 

require a lighter fin with a higher rate of heat transfer. Increasing the heat transfer 

mainly depends on the heat transfer coefficient (h), the surface area available and 

the temperature difference between the surface and surrounding fluid. However, 
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this requirement is often justified by the high cost of the high-thermal-conductivity 

metals, in which high thermal conductivity metals also have high cost. The fin is 

porous to allow the flow of infiltrating through it. Extensive research has been done 

in this area and many references are available, especially for heat transfer in porous 

fins [1-5]. Described below are a few papers relevant to the study described herein. 

Nonlinear problems and phenomena play an important role in applied mathematics, 

physics, engineering and other branches of science, especially some heat transfer 

equations. Except for a limited number of these problems, most of them do not 

have precise analytical solutions. Therefore, these nonlinear equations should be 

solved using approximation methods. Perturbation techniques are too strongly 

dependent upon the so-called “small parameters” [6]. Many other different methods 

have been introduced to solve a nonlinear equation such as the δ-expansion method 

[7], Adomian’s decomposition method [8], many homotopy perturbation method 

(HPM) [9-15], many variational iteration method (VIM) [16-25] and many colloca-

tion method [26-28]. 

In this work, we have applied the CM and the HPM to find the approximate 

solutions of nonlinear differential equations governing on porous fin with tempera-

ture-dependent internal heat generation. Results demonstrate that the proposed 

methods are simple and accurate compared with numerical method. It is found that 

these methods are powerful mathematical tools and that they can be applied to 

a large class of linear and nonlinear problems arising in different fields of science 

and engineering. 

 

Nomenclature  

A Section area of fin cp Specific heat 

X Dimensional space coordinates q* Heat generation 

x Horizontal direction Vw Velocity of fluid passing through the fin 

h Convection heat transfer coefficient Sh Porosity parameter 

Kr Thermal conductivity ratio εg Internal heat generation 

k Thermal conductivity  Nc Natural convection parameter 

q Conducted heat G Generation number 

p Fin perimeter  T Local fin temperature  

CM Collocation method Tb Fin base temperature 

HPM Homotopy perturbation method Greek symbols 

NUM Numerical method β Coefficient of volumetric thermal expansion 

L Length of the fin θ Dimensionless temperature 

Re(x) Residual function ε Fin surface emissivity (dimensionless) 

uɶ  Trial function Subscripts 

ci Constants eff Porous properties 

Wi Weight function b Conditions at the fin base 
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2. Analysis 

As shown in Figure 1, a rectangular porous fin profile is considered. The dimen- 

sions of this fin are length L, with wand thickness t. The cross-section area of 

the fin is constant and the fin has a temperature-dependent internal heat generation. 

 

 

Fig. 1. Schematic diagram for the problem under consideration 

Also, the heat loss from the tip of the fin compared with the top and bottom 

surfaces of the fin is assumed to be negligible. Since the transverse Biot number 

should be small for the fin to be effective [27], the temperature variation in the 

transverse direction is neglected. Thus heat conduction is assumed to occur solely 

in the longitudinal direction. The energy balance can be written as: 

 [ ] [ ]( ) ( ) * ( ) ( . ) ( )pq x q x x q A x mc T x T h p x T x T∞ ∞− + ∆ + ∆ = − + ∆ −ɺ  (1) 

The mass flow rate of the fluid passing through the porous material can be written 

as: 

 wm V x wρ= ∆ɺ  (2) 

The value of wV  should be estimated from the consideration of the flow in the 

porous medium. From Darcy’s model we have: 

 ( )xw

g k
V T T

β
υ ∞

 
 = −  (3) 

Substitution of Equations (2) and (3) into Equation (1) yields: 

 [ ] [ ]2( ) ( )
* ( ) ( )

pc g k wq x q x x
q A T x T hp T x T

x x

ρ β
∞ ∞

− + ∆
+ = − + −

∆ ∆
 (4) 
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As 0x∆ → , Equation (4) becomes 

 [ ] [ ]2
* ( ) ( )

pc g k wdq
q A T x T hp T x T

dx x

ρ β
∞ ∞+ = − + −

∆
 (5) 

Also from Fourier’s law of conduction: 

 eff

dT
q k A

dx
= −  (6) 

where A  is the cross-sectional area of the fin A wt=  and effk  is the effective 

thermal conductivity of the porous fin that can be obtained from the following 

equation [3]: 

 (1 )eff f sk k kϕ ϕ= + −  (7) 

where ϕ  is the porosity of the porous fin. Substitution of Equation (6) into 

Equation (5) leads to: 

 [ ] [ ]
2

2

2

*
( ) ( ) 0

p

eff eff eff

c g k wd T h p q
T x T T x T

t k k A kdx

ρ β

υ ∞ ∞− − + − + =  (8) 

It is assumed that heat generation in the fin varies with temperature as Equation (9) 

[27]: 

 [ ]** 1 ( )q q T Tε∞ ∞= + −  (9) 

where *q∞  is the internal heat generation at temperature T∞ . For simplifying the 

above equations, some dimensionless parameters are introduced as follows: 

 

22
2

0

*

( )
, , ,

( )

, ( )
( )

b

b

b

h
T T x hpL Da xRa L

X Nc S
T T L k A kr t

q
G g T T

h p T T

θ

ε ε

∞

∞

∞
∞

∞

−  = = = =  −  

= = −
−

 (10) 

where hS  is a porous parameter that indicates the effect of the permeability of the 

porous medium as well as the buoyancy effect, so a higher value of hS  indicates 

higher permeability of the porous medium or higher buoyancy forces. Nc  is a con-

vection parameter that indicates the effect of surface convecting of the fin. Finally, 

Equation (8) can be rewritten as: 

 
2

2 2 2

2
(1 ) 0h

d
Nc Nc G g S

dX

θ
θ ε θ θ− + + − =  (11) 
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In this research, we study a finite-length fin with an insulated tip. For this case, 

the fin tip is insulated so that there will not be any heat transfer at the insulated tip 

and boundary condition will be 

 ( ) ( )1 1, 0 0θ θ ′= =  (12) 

3. Implantation of the analytical solution 

3.1. Principles of collocation method (CM) 

Suppose we have a differential operator D  acting on a function u  to produce 

a function p  [28]: 

 ( ( )) ( )D u x p x=  (13) 

We wish to approximate u  by a function uɶ, which is a linear combination of basic 

functions chosen from a linearly independent set. That is: 

 
1

n

i i

i

u u Cϕ
=

≅ =∑ɶ  (14) 

Now, when substituted into the differential operator, D , the result of the operations 

is not, in general, ( )p x . Hence an error or residual will exist: 

 ( ) ( ) ( ( )) ( ) 0E x R x D u x p x= = − ≠ɶ  (15) 

The notion in the collocation is to force the residual to zero in some average sense 

over the domain. That is: 

 ( ) ( ) 0 1,2,...,i

x

R x W x i n= =∫  (16) 

where the number of weight functions iW  is exactly equal to the number of unknown 

constants iC  in uɶ. The result is a set of n  algebraic equations for the unknown 

constants iC . For the collocation method, the weighting functions are taken 

from the family of Dirac δ  functions in the domain. That is, ( ) ( )i iW x x xδ= − . 

The Dirac δ  function has the property that: 

 
1 if

( )
0 otherwise

i

i

x x
x xδ

=
− = 


 (17) 

And residual function in Equation (15) must be zero at specific points. 
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Application 

Consider the trial function as: 

 2 4
1 2( ) 1 (1 ) (1 )X c X c Xθ = + − + −  (18) 

which satisfies the boundary condition in Equation (12) and sets it into Equation 

(11), the residual function, 1 2( , , )R c c X , is found as: 

 

6 2 4 2 2
1 2 1 2 1 2 1 2 1 2 2

2 2 8 4 2 2 2 4
2 1 2 2 2 2 1

2 2 4 2 2 2 2 2 4 2
1 1 1 1 1 2 1

2 2 4 2
2 2

( , , ) 2 2 2 2

2 2 2

2 2 2

12 2

h h h h h

h h h h h

h h h h

h

R c c X S c X c S c xX c S c c X Nc G g c S c S c

Nc G gc S c c S c X S c x S Nc G Nc Nc c X S c

S c X S c X S c X c Nc G g c X Nc G g c X S c

c X S c X Nc c

ε

ε

ε ε

= − + + + − −

+ − − + − + − + −

+ − + − − − −

− + − 2 2 2 2
1 2 1 0Nc c Nc G g Nc c Xε− + + =

 

  (19) 

On the other hand, the residual function must be close to zero. For reaching these 

important, two specific points in the domain [ ]0,1t∈  should be chosen. These 

points are: 

 1 2

1 2
,

3 3
X X= =  (20) 

Finally, by substituting these points into the residual function, 1 2( , , )R c c X , a set of 

two equations and two unknown coefficients is obtained. After determining these 

unknown parameters 1 2( , )c c , the temperature distribution equation will be deter-

mined. Using the collocation method, the temperature formulation is as follows: 

For example, when  Nc = 0.5, Sh = 0.3, 0.1gε =  and G = 0.3: 

 
( ) 2

3

0.82494745033772148088 0.16419328426849089835

0.010859265393787620774

X X

X

θ = +

+
 (21) 

3.2. The homotopy perturbation method (HPM) 

In this section, we will apply the HPM to a nonlinear ordinary differential 

Equation (11) with the boundary condition (12). According to the HPM, we can 

construct a homotopy of Equation (11) as described in the following [8]: 

 
2 2

2 2 2

2 2
( , ) (1 ) (1 ) (1 ) h

d d
H p p p Nc Nc G g S

dX dX

θ θ
θ θ ε θ θ

   
= − + − − + + −   

   
 (22) 
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where 0,1p   ∈  is an embedding parameter. For 0p =  and 1p =  we have 

 ( ) ( ) ( ) ( )0,0 , ,1X X X Xθ θ θ θ= =  (23) 

Note that when p  increases from 0 to 1, ( ),X pθ  varies from ( )0 Xθ  to ( )Xθ .  

By substituting 

 3 3
0 1 2 3 0

0

( ) ( ) ( ) ( ) ( ) ( ) 0
n

i
i

i

X X X X X X gp p p pθ θ θ θ θ θ
=

= + + + + = =∑⋯  (24) 

into Equation (8) and rearranging the result based on powers of  p-terms, we have 

 
( )
( ) ( )

0
0

0 0

0

1 1 0 0

Xp θ

θ θ

′′ =

′= =
 (25) 

 
( ) ( ) ( ) ( )
( ) ( )

21 2 2 2
1 0 0 0

1 1

0

1 0 0 0

hX Nc G g X S X Nc X Nc Gp θ ε θ θ θ

θ θ

′′ + − − + =

′= =
 (26) 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
2 1 0 1 1

2 2

2 0

1 0 0 0

hX Nc G g X S X X Nc Xp θ ε θ θ θ θ

θ θ

′′ + − − =

′= =
 (27) 

Solving Equations (25)-(27) with boundary conditions, we have for example: 

 ( )0 1Xθ =  (28) 

 

( ) ( )2 2 2 2 2 2
1

2

1 1 1

2 2 2

1 1

2 2

h

h

X Nc G Nc G g Nc S X Nc G Nc G g

Nc S

θ ε ε= − − + + + +

− −
 (29) 

( ) ( )( )4 2 2 2 2 2
2

2 2 4 2 4 2 2 4

4 2 2 4 2 2 2

4 2 4 2 2 4 2 4 2

1
2

24

1 3 1 1

2 2 2 2

1 3 1 5 5

2 2 2 8 12

5 5 5 5 5 5

24 24 12 8 24 12

h h

h h

h h h h

h h

X X S Nc Nc G g Nc A Nc G g Nc S

S Nc G g S Nc G Nc G g Nc G g Nc G g

Nc S Nc S Nc G X S Nc G g S Nc G

Nc G g Nc G g Nc G g S Nc Nc G S

θ ε ε

ε ε ε ε

ε

ε ε ε

= − − + + − −

+ + − − +


− − − + − −


+ + − + − +

45

24
Nc+

 (30) 
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The solution of this equation, when 1p → , will be as follows: 

 
1

0

( ) lim ( )
n

i
i

P
i

X p Xθ θ
→

=

=∑  (31) 

4. Results and discussion 

In the present study analytical techniques called CM and HPM are applied to 

obtain an explicit analytic solution of the rectangular porous fin temperature 

dependent internal heat generation (Fig. 1). First, a comparison between the applied 

methods, obtained by the CM, HPM and numerical method for different values of 

active parameters is shown in Figures 4 to 6. The numerical solution is performed 

using the Maple 16.0, algebra package to solve the present case. The package uses 

a boundary value (B-V) problem procedure. The algorithm can be used to find 

moderate accuracy solutions for ODE boundary value problems and initial value 

problems, both with a global error bound. The method uses either Richardson 

extrapolation or deferred corrections with a base method of either the trapezoid or 

midpoint method. The trapezoid method is generally efficient for typical problems, 

but the midpoint method is able to handle the harmless of end-point singularities. 

The midpoint method, also known as the fourth-order Runge-Kutta-Fehlberg 

method, improves the Euler method by adding a midpoint in the step that increases 

the accuracy by one order. Thus, the midpoint method is used as a suitable numeri-

cal technique [29, 30]. In addition, the validity of the proposed methods is shown 

in Table 1. In this table, the % Error is defined as: 

 % ( ) ( )NUM AnalyticalError X Xθ θ= −  (32) 

The results are proven to be precise and accurate in solving a wide range of 

mathematical and engineering problems, especially fluid mechanic cases. 

This accuracy gives us high confidence about the validity of this problem 

and reveals an excellent agreement of engineering accuracy. This investigation is 

completed by depicting the effects of some important parameters the convection 

parameter, generation number, internal heat generation parameter and porous 

parameter evaluate how these parameters influence this temperature. 

From a physical point of view, Figures 2 to 5 are prepared in order to see the 

effects of the K and R flow parameters on the temperature distribution. As can be 

seen, the effect of natural convective heat loss (Nc) on non-dimensional tempera-

ture is shown in Figure 2. However, these figures show that as the buoyancy effects 

become stronger, i.e., Nc increases, the local temperature in the fin decreases. 

 



Thermal performance of porous fins with temperature-dependent heat generation … 61

Table 1 

The results of HPM, CM and numerical methods for θ(X) for Nc = 0.3, ε g = 0.2, 

Sh = 0.1 and G = 0.4 

X CM HPM NUM Error of CM Error of HPM 

0.00 0.934222193 0.934213444 0.934213428 8.76440E-06 1.5500E-08 

0.05 0.934383116 0.934374229 0.934374223 8.89280E-06 6.6000E-09 

0.10 0.934866626 0.934856727 0.934856715 9.91110E-06 1.2800E-08 

0.15 0.935673835 0.935661244 0.935661229 1.26058E-05 1.5200E-08 

0.20 0.936805856 0.936788323 0.936788309 1.75465E-05 1.4200E-08 

0.25 0.938263800 0.93823873 0.938238716 2.50839E-05 1.4300E-08 

0.30 0.940048779 0.940013444 0.940013429 3.53503E-05 1.4500E-08 

0.35 0.942161907 0.942113664 0.942113650 4.82565E-05 1.3700E-08 

0.40 0.944604294 0.944540815 0.944540802 6.34917E-05 1.3100E-08 

0.45 0.947377052 0.947296545 0.947296532 8.05207E-05 1.2900E-08 

0.50 0.950481295 0.950382725 0.950382714 9.85813E-05 1.1700E-08 

0.55 0.953918134 0.953801462 0.953801451 0.000116683 1.1100E-08 

0.60 0.957688681 0.957555090 0.957555079 0.000133601 1.0800E-08 

0.65 0.961794048 0.961646179 0.961646169 0.000147878 9.6000E-09 

0.70 0.966235347 0.966077540 0.966077531 0.000157816 8.3000E-09 

0.75 0.971013691 0.970852227 0.970852218 0.000161473 8.3000E-09 

0.80 0.976130192 0.975973539 0.975973531 0.000156660 7.5000E-09 

0.85 0.981585961 0.981445028 0.981445023 0.000140937 4.7000E-09 

0.90 0.987382110 0.987270513 0.987270505 0.000111605 8.7000E-09 

0.95 0.993519753 0.993454067 0.993454050 6.57030E-05 1.7300E-08 

1.00 1.000000000 1.000000000 1.000000000 0.000000000 0.00000000 

 
On the other hand, the trend is opposite in the case of internal heat generation 

parameter as illustrated in Figure 3. The increase in the internal heat generation 

parameter indicating, the temperature profile reaches to the higher value. 

Figure 4 shows the effect of porosity on temperature profiles. As seen, it is 

noticed that the tip temperature increases with the decrease of a porosity parameter. 

Hence, as the values of Sh increase, the fin cools down faster and quickly reaches 

the surrounding temperature. 

Also, Figure 5 also allows us to see the effect of the e generation number on the 

temperature for the insulated tip case. As it can be seen, the local fin temperature 

increases as the parameters G increase. 
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Fig. 2. Effect convective parameter and comparison of CM, HPM results 

with the numerical solution 

 

Fig. 3. Effect of internal heat generation parameter and comparison of CM, 
HPM results with the numerical solution 
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Fig. 4. Effect of porous parameter and comparison of CM, HPM results 

with the numerical solution 

 

Fig. 5. Effect of generation number and comparison of CM, HPM results 

with the numerical solution 
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5. Conclusion 

In this paper, an analytical analysis called the collocation method (CM) and 

the homotopy perturbation method (HPM) was presented to determine the tem- 

perature distribution in a porous fin with temperature-dependent of the internal heat 

generation. In order to derive the heat transfer equation, energy balance and 

the Darcy model are used. Also, the results obtained by the proposed method 

are validated by using a numeric scheme called the fourth order Runge-Kutta. 

The following important points can be concluded from the present study:  

For assessment of the CM and HPM, the solution and numerical tool, Table 1 has 

been presented. Comparison of the analytical solution with the numerical outcomes 

shows that the proposed methods are a convenient and powerful method in the 

engineering problem. 

It was also found that increasing Sh while increasing either Da or Ra increases 

the heat transfer from fin. In addition, as the buoyancy effects become stronger, 

i.e., Nc increases, the local temperature in the fin decreases. 
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