PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Theoretical Modeling for Predicting the Sound Absorption of Woven Fabrics Using Modification of Sound Wave Equation and Genetic Algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Woven fabric in Indonesia is generally known as a material for making clothes and it has been applied as an interior finishing material in buildings, such as sound absorbent material. This study presents a new method for predicting the sound absorption of woven fabrics using a modification of the wave equations and using genetic algorithms. The main aim of this research is to study the sound absorption properties of woven fabric by modeling using a modification of the sound wave equations and using genetic algorithms. A new model for predicting the sound absorption coefficient of woven fabric (plain, twill 2/1, rips and satin fabric) as a function of porosity, the weight of the fabric, the thickness of the fabric, and frequency of the sound wave, was determined in this paper. In this research, the sound absorption coefficient equation was obtained using the modification of the sound wave equation as well as using genetic algorithms. This new model included the influence of the sound absorption coefficient phenomenon caused by porosity, the weight of the fabric, the thickness of fabric as well as the frequency of the sound wave. In this study, experimental data showed a good agreement with the model.
Rocznik
Strony
108--122
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Textile Engineering, Politeknik STTT Bandung, Bandung, Indonesia
autor
  • Department of Textile Engineering, Politeknik STTT Bandung, Bandung, Indonesia
  • Department of Textile and Apparel Engineering, Politeknik STTT Bandung, Bandung, Indonesia
  • Department of Physics, Universitas Nusa Cendana, Kupang, Indonesia
autor
  • Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
Bibliografia
  • [1] Shoshani Y, Rosenhouse G., (1990), Noise absorption by woven fabrics. Appl Acoust;30(4),:321–33.
  • [2] Hanna YI, Kandil MM., (1991), Sound absorbing double curtains from local textile materials. Appl Acoust;34(4):281–91.
  • [3] Park C-M, Ih JG, Nakayama Y, Takao H., (2003), Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients. J AcoustSoc Am;113(1),:128–38.
  • [4] Maa, D.,(1975), Theory and design of microperforated panel sound-absorbing constructions. Sci Sinica;18(1):55–71.
  • [5] Maa D., (1985), Microperforated-panel wideband absorbers. Noise Control Eng J;29:77–84.
  • [6] Maa D., (1998), Potential of microperforated panel absorber. J AcoustSoc Am,;104:2861–6.
  • [7] Zha X, Fuchs HV, Drotleff H., (2002), Improving the acoustic working conditions for musicians in small spaces. Appl Acoust;63(2):203–21.
  • [8] Zhao X, Fan X., (2015), Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates. Appl Acoust;88:123–8.
  • [9] Zhao XD, Yu YJ, Wu YJ., (2016), Improving low-frequency sound absorption of microperforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. ApplAcoust;114:92–8.
  • [10] Sakagami K, Kobatake S, Kano K, Morimoto M, Yairi M., (2011), Sound absorption characteristics of a single microperforated panel absorber backed by a porous absorbent layer. Acoust Aust;39(3):95–100.
  • [11] Liu Z, Zhan J, Fard M, Davy JL., (2017), Acoustic measurement of a 3D printed microperforated panel combined with a porous material. Meas J IntMeas Conf;104:233–6.
  • [12] Kang J, Fuchs HV., (1999), Predicting the absorption of open weave textiles and microperforated membranes backed by an air space. J Sound Vib;220 (5):905–20.
  • [13] Sakagami K, Morimoto M, Koike W., (2006), A numerical study of double-leaf microperforated panel absorbers. Appl Acoust;67(7):609–19.
  • [14] Sakagami K, Matsutani K, Morimoto M., (2010), Sound absorption of a double-leaf micro-perforated panel with an air-back cavity and a rigid-back wall: detailed analysis with a Helmholtz-Kirchhoff integral formulation. Appl Acoust;71(5):411–7.
  • [15] Padhye R, Nayak R., (2016), Acoustic textiles, Springer (New York).
  • [16] Pieren R, Heutschi K., (2015), Predicting sound absorption coefficients of lightweight multilayer curtains using the equivalent circuit method. Appl Acoust;92:27–41
  • [17] Allard J, Atalla N., (2009) Propagation of sound in porous media: modelling soundabsorbing materials. Wiley (New York);.
  • [18] Ingard U., (1994) Notes on sound absorption technology. Noise Control Foundation (London).
  • [19] Bies DA, Hansen CH., (1980), Flow resistance information for acoustical design. ApplAcoust;13(5):357–91.
  • [20] Aso K and Kinoshita R, (1963) Absorption of sound wave by fabrics, Part 1: Absorption mechanism. Textile Machinery Society of Japan; 8(1): 32–39.
  • [21] Aso K and Kinoshita R., (1964), Absorption of sound wave by fabrics, Part 3: Flow resistance. Textile Machinery Society of Japan; 10(5): 236–241.
  • [22] Aso K and Kinoshita R., (1964), Sound absorption character-isticsof fiber assemblies. Textile Machinery Society of Japan; 10(5): 209–217.
  • [23] Na YJ, Lancaster J, Casali J and Cho G., (2007), Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textile Res J; 77(5): 330–335.
  • [24] Lee YE and Joo CW., (2003), Sound absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Res J; 3(2): 77–84.
  • [25] Vassiliadis, S. (2012), Electronics and Computing in Textiles. (Bookboon)
  • [26] Yairi M, Sakagami K, Takebayashi K, Morimoto M., (2011), Excess sound absorption at normalincidence by two micro perforated panel absorbers with different impedance. AcoustSci Technol;32(5):194–200
  • [27] Prasetiyo, I Muqowi, E., Putra, A, Novenbrianty, M., Desendra, G., Adhika, D.R., (2020), Modelling sound absorption of tunable double layer woven fabrics, ApplAcoust: 157.107008
  • [28] Atalla N., Sgard F., Atalla Y., (2005), On the modeling of perforated plates and screens, 12th ICSV, (Lisbon, July)
  • [29] Crocker MJ, Arenas JP. (2007), Use of sound-absorbing materials. In: Crocker MJ, editor. Handbook of noise and vibration control. John Wiley & Sons (New York)
  • [30] Greiner W, Neise L, Stocker H, (1995), Thermodynamics and Statistical Mechanics, SpringerVerlag (New York)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9fcb64b-6a5c-4fa3-9f7f-6091d068163e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.