Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Effects of various friction stir processing (FSP) variables on the microstructural evolution and microhardness of the AZ31 magnesium alloy were investigated. The processing variables include rotational and travelling speed of the tool, kind of secondphase (i.e., diamond, Al2 O3 , and ZrO2 ) and groove depth (i.e., volume fraction of second phase). Grain size, distribution of second phase particle, grain texture, and microhardness were analyzed as a function of the FSP process variables. The FSPed AZ31 com-posites fabricated with a high heat input condition showed the better dispersion of particle without macro defect. For all composite specimens, the grain size decreased and the microhardness increased regardless of the grooved depth compared with that of the FSPed AZ31 without strengthening particle, respectively. For the AZ31/diamond composite having a grain size of about 1 μm, microhardness (i.e., about 108 Hv) was about two times higher than that of the matrix alloy (i.e., about 52 Hv). The effect of second phase particle on retardation of grain growth and resulting hardness increase was discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
907--911
Opis fizyczny
Bibliogr. 7 poz., fot., rys.
Twórcy
autor
- Seoul National University of Science and Technology, Convergence Institute of Biomedical Engineering and Biomaterials, Program of Materials Science & Engineering, Seoul, 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science & Engineering, Seoul, 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science & Engineering, Seoul, 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science & Engineering, Seoul, 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Mechanical & Automotive Engineering, Seoul, 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science & Engineering, Seoul, 01811, Korea
Bibliografia
- [1] W. Wen, W. Kuaishe, G. Qiang, W. Nan, Rare Met. Mater. Eng. 41 (9), 1522-1526, (2012).
- [2] J. A. Del Valle, P. Rey, D. Gesto, D. Verdera, J. A. Jimenez, O. A. Ruano, Mater. Sci. Eng. A 628, 198-206, (2015).
- [3] J. Y. Kim, J. W. Hwang, H. Y. Kim, S. M. Lee, W. S. Jung, J. W. Byeon, Arch. Metall. Mater. 62, 2B, 1039-1042, (2017).
- [4] M. Azizieh, A. H. Kokabi, P. Abachi, Mater. Des. 32, 2034-2041 (2011).
- [5] G. M. Reddy, A. S. Rao, K. S. Rao, Trans. Indian Inst. Met. 66 (1), 13-24 (2013).
- [6] M. Azizieha, M. Mazaheri, Z. Balak, H. Kafashan, H. S Kim, Mater. Sci. Eng. A 712, 655-662, (2018).
- [7] F. Khodabakhshi, A. Simchi, A. H. Kokabi, M. Sadeghahmadi, A. P. Gerlich, Mater. Sci. Technol. 31 (4), 426-435, (2015).
Uwagi
EN
1. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20181510102130).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9f991b4-d3be-48f1-b488-e44f323190af