PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Haines and Terbrugge chart for suitable slope angles - a case study of artisanal and small-scale mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Significant hazards in Artisanal and small-scale mining (ASM) are rock failure and slope collapse caused by overly steep pit walls, poor mine design and water pressure. There is a lack of expertise and capital in ASM. Providing a simple and cost-effective slope stability analysis and designing systems that can mitigate the risk of slope collapse is essential. This article aims to assess whether stability charts and estimations can be used to establish suitable slope angles to mitigate the overwhelming cases of slope collapse in ASM. The Bieniawski’s Rock Mass Rating system and Heins and Terbrugge stability chart were used to assess the stability of Small-scale mine slope and determine suitable slope angles. To validate the reliability of estimations, further analysis was performed through laboratory strength tests to find actual intact rock mass properties and create a model using OPTUM G2 to simulate the Hoek-Brown failure criterion. The study reveals that stability analysis using charts is applicable with the assistance of a rock engineering practitioner after exposing the intact rock mass to map discontinuities. The Heines and Terbrugge chart can be utilized to mitigate slope collapse in ASM, provided that the limitations of the stability graphs are recognized.
Rocznik
Strony
424--440
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • University of Johannesburg, Department of Mining Engineering and Mine Survey South Africa
  • University of Johannesburg, Department of Mining Engineering and Mine Survey South Africa
Bibliografia
  • [1] Mutemeri N, Walker JZ, Coulson N, Watson I. Capacity building for self-regulation of the Artisanal and Small-Scale Mining (ASM) sector: a policy paradigm shift aligned with development outcomes and a pro-poor approach. Extr Ind Soc 2016;3(3). https://doi.org/10.1016/j.exis.2016.05.002.
  • [2] Laing T, Moonsammy S. Evaluating the impact of small-scale mining on the achievement of the sustainable development goals in Guyana. Environ Sci Pol 2021;116. https://doi.org/10.1016/j.envsci.2020.11.010.
  • [3] Ledwaba PF. The status of artisanal and small-scale mining sector in South Africa: tracking progress. J S Afr Inst Min Metall 2017;117(1):33-40. https://doi.org/10.17159/2411-9717/2017/v117n1a6.
  • [4] Mantashe SG. General notices • alGemene KennisGewinGs department of mineral resources and energy notice 258 of 2021. 2021. www.gpwonline.co.za.
  • [5] Debrah AA, Watson I, Quansah DPO. Comparison between artisanal and small-scale mining in Ghana and South Africa the regional frameworks: Yaounde Vision and the MMSD in the AMV. J S Afr Inst Min Metall 2014;114.
  • [6] Hentschel T, Hruschka F, Priester M. Global report on artisanal and small-scale mining. In: Mining, minerals and sustainable development; 2002.
  • [7] Kamlongera PJ. Making the poor “poorer” or alleviating poverty? Artisanal mining livelihoods in rural Malawi. J Int Dev 2011;23(8). https://doi.org/10.1002/jid.1836.
  • [8] Rodríguez-Novoa F, Holley E. Coexistence between large- scale mining (LSM) and artisanal and small-scale mining (ASM) in Perú and Colombia. Resour Pol 2023;80. https://doi.org/10.1016/j.resourpol.2022.103162.
  • [9] Bansah KJ, Yalley AB, Dumakor-Dupey N. The hazardous nature of small scale underground mining in Ghana. J Sust Min 2016;15(1):8-25. https://doi.org/10.1016/j.jsm.2016.04.004. Central Mining Institute in Katowice.
  • [10] The World Bank. Minin together: large- scale mining meets Small-scale mining- A guide for action. 2009.
  • [11] Moloi M, Zvarivadza T. Investigating slope failure and rockfall controls at a South African coal mine. In: 6th intl conference on computer applications in the minerals industries, October; 2016.
  • [12] Mametja TD, Zvarivadza T. Slope stability enhancement through slope monitoring data interpretation. In: 51st US rock mechanics/geomechanics symposium 2017. vol. 5; 2017.
  • [13] Lu JL. Occupational health and safety in small scale mining: focus on women workers in the Philippines. J Int Wom Stud 2012;13(3).
  • [14] Zvarivadza T. Artisanal and small-scale mining as a challenge and possible contributor to sustainable development. Resour Pol 2018;56. https://doi.org/10.1016/j.resourpol.2018.01.009.
  • [15] Mimba ME, Mbafor PUT, Nguemhe Fils SC, Nforba MT. Environmental impact of artisanal and small-scale gold mining in East Cameroon, Sub-Saharan Africa: an overview. Ore Energy Resource Geol 2023;15. https://doi.org/10.1016/j.oreoa.2023.100031.
  • [16] Zvarivadza T. Large scale miners - communities partnerships: a plausible option for communities survival beyond mine closure. Resour Pol 2018;56. https://doi.org/10.1016/j.resourpol.2017.12.005.
  • [17] Elenge MM, De Brouwer C. Identification of hazards in the workplaces of artisanal mining in Katanga. Int J Occup Med Environ Health 2011;24(1):57-66. https://doi.org/10.2478/s13382-011-0012-4.
  • [18] Walrond G, Bayah J, Sparman C, Hall G. 040815_COI Report_Final. 2015.
  • [19] Hilson G, Hilson A, Maconachie R. Opportunity or necessity? Conceptualizing entrepreneurship at African smallscale mines. Technol Forecast Soc Change 2018;131. https://doi.org/10.1016/j.techfore.2017.12.008.
  • [20] Hilson G, Maconachie R. Artisanal and small-scale mining and the sustainable development goals: opportunities and new directions for sub-Saharan Africa. Geoforum 2020;111. https://doi.org/10.1016/j.geoforum.2019.09.006.
  • [21] Robbins BA, Stephens IJ, Marcuson WF. Geotechnical engineering. Encycl Geol 2020;1-6. https://doi.org/10.1016/B978-0-12-409548-9.12508-4. Second Edition (Vol. 6).
  • [22] Das B, Sawicki A. Fundamentals of geotechnical engineering. Appl Mech Rev 2001;54(6). https://doi.org/10.1115/1.1421116.
  • [23] Stacey T. Safety in mines research advisory committee final report best practice rock engineering handbook for “other” mines. 2001.
  • [24] Barton N, Lien R, Lunde J. Using the Q-system: rock mass classification and support design. Norwegian Geotechnical Institute; 1974.
  • [25] Kouhdaragh M, Azarafza M, Derakhshani R. A Qslope- based empirical method to stability assessment of mountain rock slopes in multiple faults zone: a case for North of Tabriz. MethodsX 2022;9. https://doi.org/10.1016/j.mex.2022.101718.
  • [26] Mao Y, Chen L, Nanehkaran YA, Azarafza M, Derakhshani R. Fuzzy-based intelligent model for rapid rock slope stability analysis using qslope. Water (Switzerland) 2023;15(16). https://doi.org/10.3390/w15162949.
  • [27] Tao H, Xu G, Meng J, Ma R, Dong J. Stability assessment of high and steep cutting rock slopes with the SSPC method. Adv Civ Eng 2021;2021. https://doi.org/10.1155/2021/8889526.
  • [28] Romana M. The geomechanical classification SMR for slope correction. In: 8th ISRM congress; 1995.
  • [29] Tomás R, Delgado J, Serón JB. Modification of slope mass rating (SMR) by continuous functions. Int J Rock Mech Min Sci 2007;44(7). https://doi.org/10.1016/j.ijrmms.2007.02.004.
  • [30] Bieniawski ZT. The rock mass rating (RMR) system (geomechanics classification) in engineering practice. ASTM Special Technical Publication; 1988. STP 984. https://doi.org/10.1520/STP48461S.
  • [31] Taheri A, Tani K. Rock slope design using Slope Stability Rating (SSR) - application and field verifications. In: Proceedings of the 1st Canada-US rock mechanics symposium - rock mechanics meeting society’s challenges and demands. vol. 1; 2007. https://doi.org/10.1201/noe0415444019-c27.
  • [32] Suorineni FT, Kaiser PK, Tannant DD. Likelihood statistic for interpretation of the stability graph for open stope design. Int J Rock Mech Min Sci 2001;38(5). https://doi.org/10.1016/ S1365-1609(01)00033-8.
  • [33] Saadoun A, Hafsaoui A, Fredj M. Landslide study of lands in quarrys. Case chouf amar - M’sila, Algeria. In: Sustainable Civil Infrastructures; 2018. https://doi.org/10.1007/978-3-319-61612-4_3.
  • [34] Haines A, Terbrugge PJ. Preliminary estimation of rock slope stability using rock mass classification systems. In: 7th ISRM Congress; 1991. https://doi.org/10.1016/0148-9062(93)92931-f.
  • [35] Molyneux TG. A geological investigation of the bushveld complex in sekhukhune land and part of the Steelpoort valley. In: Transactions of the geological society of South Africa. vol. 77; 1974.
  • [36] Culshaw MG. Ulusay, R (ed.), 2015. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Bull Eng Geol Environ 2015;74(4). https://doi.org/10.1007/s10064-015-0780-3.
  • [37] Chen L, Zhang W, Zheng Y, Gu D, Wang L. Stability analysis and design charts for over-dip rock slope against bi-planar sliding. Eng Geol 2020;275. https://doi.org/10.1016/j.enggeo.2020.105732.
  • [38] Azarafza M, Hajialilue Bonab M, Derakhshani R. A novel empirical classification method for weak rock slope stability analysis. Sci Rep 2022;12(1). https://doi.org/10.1038/s41598-022-19246-w.
  • [39] Bieniawski ZT. Rock mass classifications in rock engineering vol. 1; 1977. https://doi.org/10.1016/0148-9062(77)90608-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9f8744b-3332-40ce-adde-f2416149961d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.