Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Continuous-variable quantum key distribution (CV-QKD) holds promise for enhancing security in communication networks. However, obtaining a higher secure key rate poses challenges, particularly in reliable phase estimation. So, it is very necessary for CV-QKD implementations with independent local oscillator (LO) to employ carrier recovery along with precise phase estimation. Our methodology combines extended Kalman filters (EKF) with recurrent neural networks (RNNs) to enhance the accuracy of phase recovery for locally generated LO signals. Using numerical simulations, we evaluate the achievable secret key rates for different transmission distances and line widths. The proposed method achieves a phase error of approximately 1×10– 4, leading to positive secure key rates for distances up to 40 km. This method of phase tracking solves the problem and is effective in real-time deployment of CV-QKD in communication networks.
Czasopismo
Rocznik
Tom
Strony
483--495
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Department of Electronics Engineering, Madras Institute of Technology Campus, Anna University, Chennai, 600044, Tamil Nadu, India
autor
- Department of Electronics Engineering, Madras Institute of Technology Campus, Anna University, Chennai, 600044, Tamil Nadu, India
autor
- Department of Electronics Engineering, Madras Institute of Technology Campus, Anna University, Chennai, 600044, Tamil Nadu, India
autor
- Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
Bibliografia
- [1] SHOR P.W., Algorithms for quantum computation: discrete logarithms and factoring, [In:] Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 1994: 124-134. https://doi.org/10.1109/SFCS.1994.365700
- [2] BENNETT C.H., BRASSARD G., Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 2014: 7-11. https://doi.org/10.1016/j.tcs.2014.05.025
- [3] CHOI I., ZHOU Y.R., DYNES J.F., YUAN Z., KLAR A., SHARPE A., PLEWS A., LUCAMARINI M., RADIG C., NEUBERT J., GRIESSER H., EISELT M., CHUNNILALL C., LEPERT G., SINCLAIR A., ELBERS J.-P., LORD A., SHIELDS A., Field trial of a quantum secured 10Gb/s DWDM transmission system over a single installed fiber, Optics Express 22(19), 2014: 23121-23128. https://doi.org/10.1364/OE.22.023121
- [4] RALPH T.C., Security of continuous-variable quantum cryptography, Physical Review A 62(6), 2000: 062306. https://doi.org/10.1103/physreva.62.062306
- [5] REVACH G., SHLEZINGER N., NI X., ESCORIZA A.L., VAN SLOUN R.J.G., ELDAR Y.C., Kalman Net: Neural network aided Kalman filtering for partially known dynamics, IEEE Transactions on Signal Processing 70, 2022: 1532-1547. https://doi.org/10.1109/tsp.2022.3158588
- [6] GROSSHANS F., GRANGIER P., Continuous variable quantum cryptography using coherent states, Physical Review Letters 88(5) 2002: 057902. https://doi.org/10.1103/physrevlett.88.057902
- [7] HUANG P., HUANG J., ZHANG Z., ZENG G., Quantum key distribution using basis encoding of Gaussian-modulated coherent states, Physical Review A 97, 2018: 042311. https://doi.org/10.1103/PhysRevA. 97.042311
- [8] LAUDENBACH F., PACHER C., FUNG C.-H.F., POPPE A., PEEV M., SCHRENK B., HENTSCHEL M., WALTHER P., HÜBEL H., Continuous-variable quantum key distribution with Gaussian modulation —The theory of practical implementations, Advanced Quantum Technologies 1(1), 2018: 1800011. https://doi.org/10.1002/qute.201800011
- [9] MA X.-C., SUN S.-H., JIANG M.-S., LIANG L.-M., Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Physical Review A 88, 2013: 022339. https://doi.org/10.1103/PhysRevA.88.022339
- [10] SHOR P.W., PRESKILL J., Simple proof of security of the BB84 quantum key distribution protocol, Physical Review Letters 85, 2000: 441-444. https://doi.org/10.1103/PhysRevLett.85.441
- [11] QI B., LOUGOVSKI P., POOSER R., GRICE W., BOBREK M., Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Physical Review X 5(4), 2015: 041009. https://doi.org/10.1103/physrevx.5.041009
- [12] ZHANG Y., CHEN Z., PIRANDOLA S., WANG X., ZHOU C., CHU B., ZHAO Y., XU B., YU S., GUO H., Long -distance continuous-variable quantum key distribution over 202.81 km of fiber, Physical Review Letters 125, 2020: 010502. https://doi.org/10.1103/PhysRevLett.125.010502
- [13] IP E., KAHN J.M., Feedforward carrier recovery for coherent optical communications, Journal of Lightwave Technology 25(9), 2007: 2675-2692. https://doi.org/10.1109/JLT.2007.902118
- [14] JHON Y.M., KI H.J., KIM S.H., Clock recovery from 40 Gbps optical signal with optical phase-locked loop based on a terahertz optical asymmetric demultiplexer, Optics Communications 220(4-6), 2003: 315-319. https://doi.org/10.1016/S0030-4018(03)01408-1
- [15] TANG X., KUMAR R., REN S., WONFOR A., PENTY R.V., WHITE I.H., Performance of continuous variable quantum key distribution system at different detector bandwidth, Optics Communications 471, 2020: 126034. https://doi.org/10.1016/j.optcom.2020.126034
- [16] GHALAII M., OTTAVIANI C., KUMAR R., PIRANDOLA S., RAZAVI M., Long-distance continuous-variable quantum key distribution with quantum scissors, IEEE Journal of Selected Topics in Quantum Electronics 26(3), 2020: 6400212. https://doi.org/10.1109/JSTQE.2020.2964395
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9ef0351-505b-48e0-85ab-100ca5dec0d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.