PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interactions of insoluble micro- and nanoparticles with the air-liquid interface of the model pulmonary fluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work discusses physicochemical phenomena related to interactions between the inhaled particles and the surface of pulmonary fluid which contains the lung surfactant. Dynamic surface phenomena which arise due to periodical variations of the interfacial area during breathing cycle are the extraordinary feature of this system and they are strictly related to the mechanics of ventilation and the pulmonary mass transfer processes. Presence of foreign material such as inhaled micro- and nanoparticles with different size, surface properties and morphology may alter these phenomena which may have some health consequences. This effect is discussed on two examples: mineral particles (CeO2) and carbonaceous particles emitted from diesel engine running on two different fuels. Two experimental methods of research in this field are presented: the Langmuir balance and the oscillating pendant drop. The results show the sensitivity of dynamic surface properties of the lung surfactant on exogenous materials which may be introduced to the respiratory system by inhalation of dusty air. Some physicochemical interpretation of these results is presented.
Rocznik
Strony
151--162
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • ANDREASSEN, S., STEIMLE, K.L., MOGENSEN, M.L., BERNARDINO DE LA SERNA, J., REES, S., KARBING, D.S., 2010. The Effect of Tissue Elastic Properties and Surfactant on Alveolar Stability. J. Appl. Physiol., 109, 1369–1377.
  • BOSTRÖM, C.-E., GERDE, P., HANBERG, A., JERNSTRÖM, B., JOHANSSON, C., KYRKLUND, T., RANNUG, A., TÖRNQVIST, M., VICTORIN, K., WESTERHOLM, R., 2002. Cancer Risk Assessment, Indicators and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. Envir. Health Perspect. 110 Suppl. 3, 451-488.
  • CHAKRABORTY, M., KOTECHA, S., 2013. Pulmonary Surfactant in Newborn Infants and Children. Breathe, 9, 476-488.
  • DENKOV, N.D., MARINOVA, K.G., 2006. Antifoam Effects of Solid Particles, Oil Drops and Oil-Solid Compounds in Aqueous Foams. in: Colloidal Particles at Liquid Interfaces (B.P. Binks & T.S. Horozov, Eds.), Cambridge University Press, Cambridge, UK, Chapt. 10, pp. 383-444.
  • DWIVEDI, M.V., HARISHCHANDRA, R.K., KOSHKINA, O., MASKOS, M, GALLA, H.-J., 2014. Size Influences the Effect of Hydrophobic Nanoparticles on Lung Surfactant Model Systems. Biophys. J., 106, 289–298.
  • FARNOUD, A.M., FIEGEL, J., 2012. Low Concentrations of Negatively Charged Sub-Micron Particles Alter the Microstructure of DPPC at the Air–Water Interface. Coll. Surf. A: Physicochem. Eng. Aspects, 415, 320–327.
  • GANTT, B., HOQUE, S., WILLIS, R.D., FAHEY, K.M., DELGADO-SABORIT, J.M., HARRISON, R.M., ERDAKOS, G.B., BHAVE, P.V., ZHANG, K.M., KOVALCIK, K., PYE, H.O.T., 2014. Near-Road Modeling and Measurement of Cerium-Containing Particles Generated by Nanoparticle Diesel Fuel Additive Use. Environ. Sci. Technol., 48, 10607–10613.
  • GHIO, A.J., SMITH, C.B., MADDEN, M.C., 2012. Diesel Exhaust Particles and Airway Inflammation. Curr. Opin. Pulm. Med., 18, 144-150.
  • GRADOŃ, L., PODGÓRSKI, A., 1989. Hydrodynamical Model of Pulmonary Clearance. Chem. Eng. Sci., 44, 741–749.
  • GRADOŃ, L., PODGÓRSKI, A., SOSNOWSKI, T.R., 1996. Experimental and Theoretical Investigations of Transport Properties of DPPC Monolayer. J. Aerosol Med., 9, 357–367.
  • GRADOŃ, L., BIAŁECKI, J., HOŁYST, J., SOSNOWSKI, T.R., 2000. The Role of Surfactant In Mass Transfer through the Liquid-Gas Interface. Inz. Chem. Proc., 21, 163-182.
  • GUZMÁN, E., LIGGIERI L., SANTINI E., FERRARI M., RAVERA F., 2011. Effect of Hydrophilic and Hydrophobic Nanoparticles on the Surface Pressure Response of DPPC Monolayers. J. Phys. Chem. C, 115, 21715–21722.
  • GUZMÁN, E., SANTINI, E., ZABIEGAJ, D., FERRARI, M., LIGGIERI, L., RAVERA, F., 2015. Interaction of Carbon Black Particles and Dipalmitoylphosphatidylcholine at the Water/Air Interface: Thermodynamics and Rheology. J. Phys. Chem. C, 44, 26937-26947.
  • HARISHCHANDRA, R.K., SALEEMA, M., GALLA, H.-J., 2010. Nanoparticle Interaction with Model Lung Surfactant Monolayers. J. Royal Soc. Interf. 7 Suppl. 1, S15-S26.
  • HEINRICH, U., MUHLE, H., TAKENAKA, S., ERNST, H., FUHST, R., MOHR, U., POTT, F., STÖBER, W., 1986. Chronic Effects on the Respiratory Tract of Hamsters, Mice and Rats after Long-Term Inhalation of High Concentrations of Filtered and Unfiltered Diesel Engine Emissions. J. Appl. Toxicol., 6, 383-395.
  • KODAMA, A.T., KUO, C.C., BOATWRIGHT, T., DENNIN, M., 2014. Investigating the effect of particle size on pulmonary surfactant phase behavior. Biophys. J., 107, 1573-1581.
  • KONDEJ, D., SOSNOWSKI, T.R., 2013. Alteration of Biophysical Activity of Pulmonary Surfactant by Aluminosilicate Nanoparticles. Inhal. Toxicol., 25, 77–83.
  • KONDEJ, D., SOSNOWSKI, T.R., 2014. Physicochemical Mechanisms of Mineral Nanoparticles Effects on Pulmonary Gas/Liquid Interface Studied in Model Systems. Physicochem. Probl. Miner. Process., 50, 55–67.
  • KONDEJ, D., SOSNOWSKI, T.R., 2016a. Effect of Clay Nanoparticles on Model Lung Surfactant: a Potential Marker of Hazard from Nanoaerosol Inhalation. Environ. Sci. Pollut. Res., 23, 4660–4669.
  • KONDEJ, D., SOSNOWSKI, T.R., 2016b. The Influence of Cerium Oxide Nanoparticles on the Surface Activity of Pulmonary Surfactant. Ann. Set The Environ. Prot., 18, 146-157 (in Polish)
  • KRAMEK-ROMANOWSKA, K., ODZIOMEK, M., SOSNOWSKI, T.R., 2015. Dynamic Tensiometry Studies on Interactions of Novel Therapeutic Inhalable Powders with Model Pulmonary Surfactant at the Air–Water Interface. Coll. Surf. A: Physicochem. Eng. Aspects, 480, 149-158.
  • MAESTRO, A., SANTINI, E., ZABIEGAJ, D., LLAMAS, S., RAVERA, F., LIGGIERI, L., ORTEGA, F., RUBIO, R.G., GUZMAN, E., 2015. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Cond. Matter Physics, Article ID 917516 (17 pages) DOI: 10.1155/2015/917516
  • MARICQ, M.M., 2002. Chemical Characterization of Particulate Emissions from Diesel Engines: A Review. J. Aerosol Sci., 38, 1079-1118.
  • MPPD, 2017. MULTI-PATH PARTICLE DOSIMETRY Model. Available on-line: https://www.ara.com/products/ multiple-path-particle-dosimetry-model-mppd-v-304. (accessed: 30.06.2017).
  • NIECIKOWSKA, A., KRASOWSKA, M., RALSTON, J., MAŁYSA, K., 2012. Role of Surface Charge and Hydrophobicity in the Three-Phase Contact Formation and Wetting Film Stability under Dynamic Conditions. J. Phys. Chem. C, 116, 3071–3078.
  • NOTTER, R.H., TAUBOLD, R., MAVIS, R.D., 1982. Hysteresis in Saturated Phospholipid Films and Its Potential Relevance for Lung Surfactant Functions In Vivo. Exp. Lung Res., 3,109–127.
  • PENCONEK, A., ZGIET, B. SOSNOWSKI, T.R., MOSKAL, A. 2013. Filtering of DEP (Diesel Exhaust Particles) in Fibrous Filters. Chem. Eng. Trans., 32, 1987-1992.
  • PODGÓRSKI, A., GRADOŃ, L., 1993. An Improved Mathematical Model of Hydrodynamical Self-Cleansing of Pulmonary Alveoli. Ann. Occup. Hyg., 37, 347-365.
  • POPE III, C.A., BURNETT, R.T., THUN, M.J., CALLE, E.E. KREWSKI, D., ITO, K., THURSTON, G.D., 2002. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. J.A.M.A., 287, 1132–1141.
  • SALVI, S., BLOMBERG, A., RUDELL, B., KELLY, F., SANDSTRÖM, T., HOLGATE, S.T., FREW, A., 1999. Acute Inflammatory Responses in the Airways and Peripheral Blood after Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers. Am. J. Respir. Crit. Care Med., 159, 702-709.
  • SHAW, C.A., ROBERTSON, S., MILLER, M.R., DUFFIN, R., TABOR, C.M., DONALDSON, K., NEWBY, D.E., HADOKE, P. W. F., 2011. Diesel Exhaust Particulate–Exposed Macrophages Cause Marked Endothelial Cell Activation. Am. J. Respir. Cell Mol. Biol., 44, 840–851.
  • SOSNOWSKI, T.R., 2016. Selected Engineering and Physicochemical Aspects of Systemic Drug Delivery by Inhalation. Curr. Pharm. Des., 22, 2453-2462.
  • SOSNOWSKI, T.R., GRADOŃ, L., PODGÓRSKI, A., 2000. Influence of Insoluble Aerosol Deposits on the Surface Activity of the Pulmonary Surfactant: a Possible Mechanism of Alveolar Clearance Retardation. Aerosol Sci. Technol., 32, 52-60.
  • SOSNOWSKI, T.R., GRADOŃ, L., SKOCZEK, M., DROŹDZIEL, H., 1998. Experimental Evaluation of the Importance of the Pulmonary Surfactant for Oxygen Transfer Rate in Human Lungs. Int. J. Occup. Safety Ergon., 4, 391-409.
  • SOSNOWSKI, T.R., KUBSKI, P., WOJCIECHOWSKI, K., 2017. New Experimental Model of Pulmonary Surfactant for Biophysical Studies. Coll. Surf. A: Physicochem. Eng. Aspects, 519, 27–33.
  • TATUR, S., BADIA, A., 2012. Influence of Hydrophobic Alkylated Gold Nanoparticles on the Phase Behavior of Monolayers of DPPC and Clinical Lung Surfactant. Langmuir, 28, 628–639.
  • ZAWAŁA, J., KARAGUZEL, C., WIERTEL, A., SAHBAZ, O., MAŁYSA, K., 2017. Kinetics of the Bubble Attachment and Quartz Flotation in Mixed Solutions of Cationic and Non-Ionic Surface-Active Substances. Coll. Surf. A: Physicochem. Eng. Aspects, 523, 118-126.
  • ZUO, Y.Y., VELDHUIZEN, R.A., NEUMANN, A.W., PETERSEN, N.O., POSSMAYER, F., 2008. Current Perspectives in Pulmonary Surfactant-Inhibition, Enhancement and Evaluation. Biochim. Biophys. Acta, 1778, 1947–1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9e8ffab-daea-429c-b777-edd6b07883f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.