PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical simulation of formability tests of pre-deformed steel blanks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of numerical simulations of the formability tests carried out for a pre-stretched 1 mm thick DC04 steel sheet. Simulation consisted of the subsequent stages as follows: uniaxial stretching of the sheet, unloading and stress relaxation, cutting specimens out of the pre-stretched sheet and bulging the blank with a hemispherical punch. Numerical modeling has been verified by comparison of the simulation results with the experimental ones. Good concordance of the results indicates correct performance of the numerical model and possibility to use it in further theoretical studies.
Rocznik
Strony
133--141
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] A. Graf, W. Hosford, Effect of changing strain paths on forming limit diagrams of AL 2008-T4, Metallurgical and Materials Transactions A 24 (11) (1993) 2503.
  • [2] M. Karali, Examination of the strength and ductility of AA–1050 material shaped with the multi-stage deep drawing method, Archives of Metallurgy and Materials 56 (2) (2011) 223–230.
  • [3] M. Packo, M. Dukat, T. Śleboda, M. Hojny, The analysis of multistage deep drawing of AA5754 aluminum alloy, Archives of Metallurgy and Materials 55 (4) (2010) 1173–1184.
  • [4] M.H. Chen, L. Gao, D.W. Zuo, M. Wang, Application of the forming limit stress diagram to forming limit prediction of the multi-step forming of auto panels, Journal of Materials Processing Technology 187–188 (2007) 173–177.
  • [5] T.B. Stoughton, X. Zhu, Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD, International Journal of Plasticity 20 (8–9) (2004) 1463–1486.
  • [6] M. Nurcheshmeh, D.E. Green, Investigation on the strain-path dependency of stress-based forming limit curves, International Journal of Material Forming 4 (1) (2011) 25–37.
  • [7] K. Yoshida, T. Kuwabara, M. Kuroda, Path dependence of the forming limit stresses in a sheet metal, International Journal of Plasticity 23 (2007) 361–384.
  • [8] M.C. Butuc, F. Barlat, J.J. Gracio, A. Barata da Rocha, A new model for FLD prediction based on advanced constitutive equations, International Journal of Material Forming 3 (3) (2009) 191–204.
  • [9] A. Reyes, O.S. Hopperstad, T. Berstad, O.-G. Lademo, Prediction of necking for two aluminum alloys under non-proportional loading by using an FE-based approach, International Journal of Material Forming 1 (4) (2008) 211–232.
  • [10] Q. Situ, M.K. Jain, D.R. Metzger, Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach, International Journal of Mechanical Sciences 53 (9) (2011) 707–719.
  • [11] A. Graf, W. Hosford, Calculations of forming limit diagrams for changing strain paths, Metallurgical and Materials Transactions A 24 (1993) 2497–2501.
  • [12] A. Graf, W. Hosford, The influence of strain path changes on forming limit diagrams of A1 6111 T4, International Journal of Mechanical Sciences 36 (1994) 897–910.
  • [13] M. Tkocz, F. Grosman, W. Chorzępa, Experimental Research of Drawability of Thin Sheets from Deep-Drawing Low-Carbon and Martensitic Steel (in Polish), Technical Report No. NB-224/RM2/2010, Silesian University of Technology, Poland, 2011, unpublished.
  • [14] W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy, third ed., Prentice-Hall, 2007.
  • [15] J. Rojek, O.C. Zienkiewicz, E. Onate, E. Postek, Advances in FEexplicit formulation for simulation of metalforming process, Journal of Materials Processing Technology 119 (1–3) (2001) 41–47.
  • [16] J. Rojek, E. Onate, Sheet springback analysis using a simple shell triangle with translational degrees of freedom only, International Journal of Forming Processes 1 (1999) 75–296.
  • [17] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 193 (1948) 281–297.
  • [18] J.R. Knibloe, R. Wagoner, Experimental investigation and finite element modeling of hemispherically stretched steel sheet, Metallurgical Transactions A 20A (1989) 1509–1521.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9e51cb2-cae2-4958-82c5-83db81b222d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.