Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present a new approach based on Coifman wavelets to find approximate values of definite integrals. This approach overcomes both CAS and Haar wavelets and hybrid functions in terms of absolute errors. The algorithm based on Coifman wavelets can be easily extended to find numerical approximations for double and triple integrals. Illustrative examples implemented using Matlab show the efficiency and effectiveness of this new method.
Rocznik
Tom
Strony
31--44
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar El-Oued, Algeria
Bibliografia
- [1] Francois, D. (2016). Revisited optimal error bounds for interpolatory integration rules. Advances in Numerical Analysis, Vol. 2016, 1-8, DOI: 10.1155/2016/3170595.
- [2] Sharifi, M.A., & Seif, M.R. (2014). A new family of multistep numerical integration methods based on Hermite interpolation. Celestial Mechanics and Dynamical Astronomy, 118(1), 29-48, DOI: 10.1007/s10569-013-9517-4.
- [3] Zlatko, U. (2006). Some modifications of the trapezoidal rule. Sarajevo Journal of Mathematics, 2(2), 237-245, http://www.anubih.ba/Journals/vol-2,no-2,y06/13revudovicic.pdf
- [4] Dehda, B., & Melkemi, K. (2017). Image denoising using new wavelet thresholding function. Journal of Applied Mathematics and Computational Mechanics, 16(2), 55-65, DOI: 10.17512/jamcm.2017.2.05.
- [5] Dehda, B., & Melkemi, K. (2016). Novel method for reduction of wavelet coefficients number and its applications in images compression. International Journal of Applied Mathematics and Machine Learning, 5(1), 43-65, DOI: 10.18642/ijamml_7100121693.
- [6] Imran, A. (2013). New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. Journal of Computational and Applied Mathematics, 239, 333-345, DOI: 10.1016/j.cam.2012.08.031.
- [7] Rezabeyk, S., & Maleknejad, K. (2015). Application of CAS wavelet to construct quadrature rules for numerical integration. Int. J. Industrial Mathematics, 7(1), 87-92, http://ijim.srbiau.ac.ir/
- [8] Imran, A., & Fazal, H. (2010). A comparative study of numerical integration based on Haar wavelets and hybrid functions. Computers and Mathematics with Applications, 59(6), 2026-2036, DOI: 10.1016/j.camwa.2009.12.005.
- [9] Imran, A., & Wajid, K. (2011). Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Computers and Mathematics with Applications, 61, 2770-2781, DOI: 10.1016/j.camwa.2011.03.043.
- [10] Barzkar, A., & Assari, P. (2012). Application of the CAS Wavelet in solving Fredholm--Hammerstein integral equations of the second kind with error analysis. World Applied Sciences Journal, 18(12), 1695-1704, DOI: 10.5829/idosi.wasj.2012.18.12.467.
- [11] Černa, D., Finěk, V., & Najzar, K. (2008). On the exact values of coefficients of coiflets. Cent.Eur. J. Math., 6(1), 159-169, DOI: 10.2478/s11533-008-0011-2.
- [12] Xiaomin, W. (2014). A Coiflets-based wavelet Laplace method for solving the Riccati differential equations. Journal of Applied Mathematics, Vol. 2014, 1-8, DOI: 10.1155/2014/257049.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9e4093c-1dd5-4ead-9148-3d790398b407