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Abstract. In this paper, we present a new approach based on Coifman wavelets to find
approximate values of definite integrals. This approach overcomes both CAS and Haar
wavelets and hybrid functions in terms of absolute errors. The algorithm based on Coifman
wavelets can be easily extended to find numerical approximations for double and triple
integrals. Illustrative examples implemented using Matlab show the efficiency and effec-
tiveness of this new method.
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1. Introduction

Numerical integrations play an important role in various areas of applied sciences
and engineering. Because most integrals cannot be determined via analytical methods,
the numerical integration methods have taken a growing interest of many researchers
for approximating the value of a definite integral. To see some quadrature rules
based on polynomials, one can refer to [1-3]. In recent years, wavelets have gained
a lot of popularity and have become a standard tool for many disciplines. So, many
authors applied wavelets in images processing [4, 5], in mathematics [6] and in other
areas of physics and engineering. Wavelet bases with collocation methods have been
used for solving single, double and triple integrals [7-9], such as in [10] and for
2k (2M +1) points, the error bound corresponding to CAS wavelets is inversely
proportional to M. Similarly, in [8] for 2M points, the Haar wavelets method
provides an approximation error evaluated by O(M _1). In addition, the Hybrid
function method uses NM points with k-th derivative of the integrand function to
get a better error bound estimated by O(NM )™*. However, the convergence rate of
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previous methods is only O(M _s) at most and it does not decrease exponentially
to obtain a faster approximation. Moreover, it cannot be improved by increasing
the order derivative of the integrand function. To overcome this problem and to
improve the convergence rate, we propose in this paper a new method based on
Coifman wavelets for solving single, double and triple integrals. By using this new

method, the convergence rate is improved to 0(2_21\7 ) for an integrand function

feC *¥ and j > 0. Ilustrative examples have shown the accuracy and effective-

ness of our proposed method compared to existing methods.

This work is structured as follows: The next section recalls the CAS and Haar
wavelets methods to numerical integration. Section 3 introduces the hybrid func-
tions method. Section 4 presents the proposed method for single, double and triple
integrals with error analysis. Section 5 provides numerical examples to investigate
the efficiency of our proposed method. Finally, we bring this work to a close with
a conclusion and main references.

2. Numerical integration using CAS and Haar wavelets

In this section, we recall the CAS and Haar wavelets methods to numerical inte-
gration for single, double and triple integrals.

2.1. CAS wavelets
In [7], Cosine and Sine wavelet , , (x) is defined by:

k
> n
iy, (x)= | B CAS, @ x ) S sae e (1)

0, otherwise,

where: CAS,, (x) = cos(2mzx)+sin(2mzx), k=0,1,2,3,..., n= 0,1,...25~1, me Z.
The set of CAS wavelets forms an orthonormal basis of L’ ([O,l]), so any function

f which is square integrable in the interval [0,1], it can be expanded as the follow-
ing form:

+o0 21 M
f = z zcn,mv/n,m = Z ch,m‘//n,m . (2)
n=0meZ n=0m=—-M

1
Using (1) and (2), the definite integral IO f (x)dx is approximated by
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[/ (e = IZ chmwnm (X = Zc,,o (3)

n=0m= n=0
22

To obtain the CAS wavelets coefficients ¢, ;, we use the collocation points as
2] - 1 . k
X, =——F-—,j=L...,2"(2M +1). 4
J 2k+l (2M + 1) J ( ) ( )
Therefore, by substituting these points in (2), we have:
251 M .
f(x_j): z zcn,ml//n,m(xj)’jzla"'ﬂz (2M+1)’ (5)

n=0m=-M

by solving this linear system of equations, we get the coefficients ¢, ,. Hence,
the quadrature rule for single integrals [7] is given by:

2% (2M +1)

! 1 2i -1
Iof (k= 2F(2M +1) Z;' 4 (2"”(21\4 + 1)}’ ©

b
and generally for the integral I f(x)dx, we have:

[ f(x)dx= 5 f{ #} (7)

2k (2M+1 pr 2M +1)

Now, by applying the formula (7), we can obtain quadrature rules for double and
triple integrals as the following forms:

_ 2¥(2M +1) _ .
J‘J-é())fx y)dxdy~ b-a z H[a+(b a)(ZZ 1))’ (8)

h) 2F2M +1) 5 2K (2M +1)

where H(y) M

2F(2M +1)°
A
brg(y) pa(y.2) h—a 2@ (b—a)(Zi—l)
dxdydz ~ —————— Rla+——""— 2| (9
L J.h(y) L(y,z) S oy, )y 2F(2Mm +1) Z;‘ “ 2 (2Mm +1) ©

“2M + P 2°12M +1)

1
».2)Y ”“ (q(r,2)-e(r,2)2i-1)
H(y’z)( 2M+1 N+ ==y )

where R(Z)z[ng h(ﬂ]ﬁ“ﬁ” (mm( gle)- (>><2l-1>,] and
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2.2. Haar wavelets

The Haar wavelets basis defined on the interval [a,b) is a family of functions
defined on subintervals of [a,b) generated from the scaling and wavelet functions
by the dilation and translation [8], these functions are given by:

The scaling function:

1, forxela,b),
hy(x)= (10)

0, otherwise,

and the wavelet function:

1, forxe[a,aer],
2

hy(x) =1 -1, forxe[a;b,bj, (11)

0, otherwise.

Now, for the other functions 4;:

1, forxela,p),

hi(x)z _1, for-xe[a,ﬂ): (12)
0, otherwise,
where
a=a+(b—a)£,,8:a+(b—a)k+0'5,;/=a+(b—a)k+1,i=3,4,...,2M.
m m m

The integer m = 27 where j=0,1,...J, J=2" k=0,1,...m—1, i=m+k+1.

Thus, any function f e L’ ([a,b)) can be expressed as

(@)=Y ah(x) (13)

Using the collocation method with Haar wavelets, we obtain the following formula
for single integrals:

J.:f(x)dxzl;;jlzzjj:f(a+—(b_a)(k_o'5)]. (14)

2M

For double and triple integrals, one can refer to [8, 9].
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3. Numerical integration using hybrid functions

The Hybrid functions family v, ;,i= L2,...n, j=0,1,...,m—1 is defined on
the interval [0,1) by:

i—1 i
L.(2nx-2i+1), forxe|—1 K —|,
/( ) [n n]

Vi (x)z (15)

0, otherwise,

where, Ly(x) =1, L (x) = ¥, Ly (x) = (2" “j Lk(x)—(L)Lk_l(x),k=1,2,....

k+1 k+1

So, any function fe L* ([O, 1)) can be expressed as

+00 400

f=32cw., (x)- (16)

i=1 j=0

Using the collocation method for hybrid functions, we get the integration formula
for single integrals with different values of m as in [8]:

For m =1,
1 1S (2i-1
Iof(x)dxz;;f( > j (17)
For m=2,
1 1 & (2i-1
J.Of(x)dx~5izl:f( . ) (18)
For m=3,
jf {3]”( ]+2f(6i6;3)+3f(6i6;1ﬂ. (19)

For approximate values of double and triple integrals with different values of m,
one can refer to [8, 9].

4. Proposed numerical integration method
The aim of this section is to develop a new numerical integration method that

overcomes the previous three methods for single, double and triple integrals in
terms of absolute errors.
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4.1. Coifman wavelets overview

In [11], an orthonormal wavelet basis is called a Coifman wavelet basis (Coiflet)
of degree N, N =1,2,..., if the corresponding scaling function ¢ and wavelet i
satisfy:

supp = suppy <[0,6N-1], (20)
f“’go(x)dx 1, [wx”’(p(x)dx =0, /=1,2,.,2N-1, Q1)
[7x'y(x)ax=0, £=0,1,...2N-1. (22)

The Coifman scaling function ¢ of degree N verifies the following properties that
will be useful in our study:

Zw: p(x—k)=1, Vxe(-ow,+0), (23)
k=—0
Z.O (x—k)ﬁqo(x—k)zo, £=1,2,..2N-1, Vxe(—oo,—i—oo). (24)

k=-

More details and other properties of coiflets, one can refer to [12].

4.2. Numerical formula for single integrals using coiflets

Definition 4.1. Let ¢ be the Coifman scaling function of degree N and f be
a function defined on [1 —6N,6N — 1]. The coiflet sampling approximation of f’
at level j, ( jz O) on the interval [0, 6N — 1] is defined by:

;(6N-1)2
S, f(x)=2" f f( L )ca, ((x), xefoen 1], (25)

e\ 2
v
where go_j,k(x) =22 gp(Z-’x - k).
The following theorem provides the numerical formula for single integrals.

Theorem 4.2. Let a<b and feC? ([2a—b, b]). For a Coifman scaling
function ¢ of degree N and ;> 0, we define /, f by:

( 6N 1)2/ -1 7k+(6N 1)

b-a |k
ij (6N 12] 2 I (x)dx f{a+(6N—1JF)’ (26)

-k
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b
then /, f is an approximate value of the integral L f (x)dx whose the error esti-

mation is evaluated by:

U” f()dx—1, f| < C2729, 27)

where C depends only on f and ¢.
To demonstrate the previous theorem, we need to provide the following lemmas.
Lemma 4.3. Let ¢ be the Coifman scaling function of degree N, then we

have:
(6N-1)27
> ¢;(2fx—k)=1,xe[o,6zv—1], (28)
k=1-6 N
and
(6N-1)27 . , .
> (2-fx—k)¢(2-fx—k)=0, 0=12,.2N -1, xe[0,6N-1].  (29)
k=1-6 N

Lemma 4.4. Let us consider f e C*" ([1—6N,6N— 1]) and ij be its coiflet

sampling approximation on [0, 6N—1], then we have:

[f =5, <c2?, (30)

*(Jo,6N-1])

where C depends only on f and ¢.

Proof of Lemma 4.3. The proof is easily derived, when we use the relations
(20), (23) and (24).

Proof of Lemma 4.4. For k=1-6N,..,(6N-1)2/ and 0<x<6N-1, the
Taylor expansion of f* at the point x gives:

k) 2N-1 ()( ) )/: f(ZN)(ak)(i_ )m
f(zf')_f(x) ; n \2 ) ey 27 Y

_J
We multiply by 2 2 ¢ ik (x) and we sum the result, we obtain

Jj (6N-1)27 _Jjoan-1 (4)(x)(6N*1)2/ k ¢
5,/(+)= f(x)zzkIZ‘gN ORI Wl R PE

*é S (e )( "
Z (2N)' (?_Xj Qlﬁk(x)

=1-6N
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Using (28) and (29) of the Lemma 4.3, we get

(6N-1)2/

1 (2N) J J
ij(x)zf(x)+WkIZ;Nf N, )(2'x- k) (0(2 x—k).

Then,

;(w—mi o) o . - 2
Hf fHLZ [0.6N-1]) ((2N)!22Nj)2 k=§;Nf (ak)( X ) (0( X )Lz([oﬁéNl])
1 we i, gy (0)=(2x4) p(2/a k). ten supp(zy) | 4 O]

and by using the regularity of ¢, we have 3C, >0, (x)| <Cy, Vxe (—oo, +oo).

Also we assume that M = sup |/ (x)|, then
‘x‘S6N—1
(6N-1)2/ 2
z f(zN) (ak )(Z-fx - k)zN(z)(Z-"x - k)
el ([0,6N-1])
(6N-1)2/ gy_11x k+6N-I
<M? Z z J'k 2/ |gk(x)gky(X)|dx
k=1-6N k'=1-6N+k 27/
<9M>C,*(6N-1)
3
Therefore, s < 3MC,y (6N -1)2 72N
L*([0.6N-1]) — (2N)!
Proof of Theorem 4.2. By a change of variable 7=(6N —l)z_a , we find
-a

that

e (o2

then the function g defined by g(l):( b-a jf(a-‘r( b-a jt) belongs to
C*™([1-6N, 6N-1]).
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By applying the Lemma 4.4, we obtain

[ s[5 a0a< [ ()5 a0

[ [ leto) -5 (0 a

(3MCy(6N-1) Ly

(2N)!
On the other hand, we have
6N-1 (6N-1)2/ k —k+(6N-1)2/
.[0 S;g(x)dx=2" z g(_’j J. @(x)dx.
k2on  \2 2

Since IO6N_1g(t)dt=Ibf(x)dx and IO6N_1Sjg(t)dl=ij, then the proof is

complete.

Remark 4.5. Since the Coifman scaling function does not have a closed
form, its integrals are determined iteratively by the cascade algorithm with good
approximation.

4.3. Numerical formula for double integrals using coiflets

Consider the following integral:
b pd
I ((“;)F(x,y)dxdy. 3D
ade(y
. . d(y)
Applying the formula (26) to the integral I ( “: F (x, y)dx, we get
ey

4 (d(y) =) VB[ e d(y)-c() | k
-L(y) Fxy)de (6N-1)21 Sy J; o(x)dx \F C(J’VF(wJZ—AJ

(32)
Now, we put

(d()—c(y)) Qo d(y)-c(y)
G(y)_—(6N—1)2'jl LN _J‘k ¢(X)dx F| c(y)+ TNl 211 —,y

(33)

We apply the formula (26) once again, we obtain the numerical formula of double
integrals with variable limits as:
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Ib'[:(y)F(x,y) dxdy = JjG(y) dy=

a 'y)

(b—a) (6N-1)272 -1 —’”(61}-1)2/2 ( )dx G(a-i—( b— aj k J (34

(6N-1)2" |, Tix 2 6N-1 )22

Note that we may take j, = j,.

4.4. Numerical formula for triple integrals using coiflets
The numerical formula for triple integrals is obtained in a similar way and is

given by:

ijd J xy, dxdydzz

a C(Z

_ (6N—1)21371 —k+(6N—1)2]3 _ (35)
—(b a) _ I ¢(x)dx H(Cl‘f‘[ b-a ]LJ

(6N-1)2% Sy | 2

(6N 1)2 k=2-6N e 2_,2
(36)
and
_ (6N-1)2/1-1 —k+(6N-1)2/1
G(y,z):(f(y,Z)_ e(i,Z)) > J- p(2)ds | e(r2)+
(6N 1)2 k=2-6N M -

e

5. Numerical examples

In this section we give numerical experiments to illustrate the efficiency of our
proposed method. Using our approach, the algorithms have been implemented in
Matlab using coiflets of degree 1 and 2 with 7 iterations. So, the numerical results
are compared with exact solutions as presented in tables.
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Example 5.1. Consider the following integral:

Il ! 2abc=£.
01+x 4

Absolute errors of four methods’ applied to numerical calculation of the single
integral are shown in Table 1.

Table 1. Comparison of absolute errors for single integral

Methods Parameters Absolute Errors
r=5k=1 2.08333e-004
CAS Wavelets r=11,k=1 4.30441e-005
r=13, k=4 4.81540e-007
M=4 3.25519¢-004
Haar Wavelets M=8 8.13802e-005
M=16 2.03451e-005
m=1,n=10 2.08333e-004
Hybrid Functions m=2,n=15 2.31481e-005
m=2,n=20 1.30208¢-005
N=1,j=10 1.66929¢-004
Proposed Method N=1,j=15 5.21712e-006
N=1,j=20 1.63036¢-007
x10*
35-
CAS Wavelets
Haar Wavelets
3r — — — Hybrid Function
Proposed Method
250
oh
1.5¢ AN
0.5F \ N S

0
10 1" 12 13 14 15 16 17 18 1 20

Fig. 1. Error graphs of Example 5.1 using four methods at different parameters

Example 5.2. Consider the following integral:

IR 1 7
'[0 '[0 mdxdy = —Zlog(\/z - 1)
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Absolute errors of four methods’ applied to numerical calculation of the double

integral are shown in Table 2

Table 2. Comparison of absolute errors for double integral

Methods Parameters Absolute Errors
r=3,k=1 8.31863¢-004
CAS Wavelets r=7,k=2 3.81794¢-005
r=11,k=3 3.86519¢-006
M=4 4.67821e-004
Haar Wavelets M=8 1.16930e-004
M=16 2.92310e-005
m=1,n=10 2.99375e-004
Hybrid Functions m=2,n=15 3.32584e-005
m=2,n=20 1.87077e-005
N=1,j=10 2.00733e-004
Proposed Method N=1,j=15 2.40027e-006
N=1,=20 7.50087¢-008
x 10°
1 -
— CAS Wavelets
0.9+ Haar Wavwelets
— — — - Hybrid Function
0.8 — Proposed Method

Fig. 2. Error graphs of Example 5.2 using four methods at different parameters

Example 5.3. Consider the following integral:

(4+7r2)

T L] a2
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Absolute errors of four methods’ applied to numerical calculation of the triple inte-

gral are shown in Table 3.

Table 3. Comparison of absolute errors for triple integral

Methods Parameters Absolute Errors
r=3,k=1 2.46417¢-002

CAS Wavelets reported in [7] r=7,k=4 7.38043¢-005
r=9,k=4 9.97127e-005

M=8 3.5959¢-003

Haar Wavelets reported in [9] M=16 9.0291e-004

M=32 2.2597¢-004

m=3,n=20 2.4465¢-007

Hybrid Functions reported in [9] m=4,n=20 1.2654¢-007

m=5,n=20 4.2473e-0011

N=1,j=20 2.21819e-007

Proposed Method N=2,j=15 1.02981e-008
N=2,j=20 6.43639¢-0013

0.025¢
——— CAS Wavelets

0.02 -

0.0151

0.011

0.005 -

Haar Wavelets
— — — - Hybrid Function
Proposed Method

0 . | |
10 1 12 13

Fig. 3. Error graphs of Example 5.3 using four methods at different parameters

15 16 17

19 20

Obviously, the numerical results and error graphs (Figs. 1-3) about these exam-
ples show that the absolute errors of our proposed method using different levels
are smaller and decrease more quickly than those obtained by the three different
methods. Moreover, due to the mathematical properties of coiflets, the differences
in the obtained errors between our proposed method and other methods are very
significant. Then, this leads to a faster and more accurate convergence for our

method.
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6. Conclusions

In this paper, a new numerical integration method based on coiflets sampling

approximation has been applied for single, double and triple integrals with variable
limits. The comparison between four methods shows that our proposed method
gives better results than CAS wavelets, Haar wavelets and Hybrid functions in
terms of absolute errors.
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