PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of future climate on suitability of major crops in Eastern Kansas River Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change significantly threatens food security and the agricultural economy, particularly under rainfed conditions. This study uses the Decision Support System for Agrotechnology Transfer (DSSAT) crop simulation model to evaluate the future suitability of growing maize and soybean in the Eastern Kansas River Basin (EKSRB) under two projected climate scenarios (RCP 4.5 and RCP 8.5) from 2006 to 2099. By comparing the baseline (1990-2019) and future climates, the yield gap percentage method is employed to quantify the discrepancy between actual and potential yields. This innovative approach integrates spatial soil variability and advanced climate projections from 18 global climate model (GCMs), enhancing the accuracy of crop suitability assessments. Results indicate yield losses ranging from 23% to 57% for maize and 20% to 36% for soybean, with maize experiencing a greater yield gap than soybean, highlighting soybean’s resilience under future climatic conditions. The study identifies critical regions within the EKSRB where adaptive strategies are most needed and provides insights for policymakers to develop targeted agricultural strategies, facilitate policy planning, and select mitigation strategies for vulnerable areas. This research underscores the necessity for adaptive agricultural practices to ensure food security and sustainability, offering a robust framework that can be adapted to similar regions globally.
Wydawca
Rocznik
Tom
Strony
145--157
Opis fizyczny
Bibliogr. 74 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Kansas State University, College of Engineering, Department of Biological and Agricultural Engineering, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA
  • Kansas State University, College of Engineering, Department of Biological and Agricultural Engineering, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA
  • Kansas State University, College of Agriculture, Department of Agronomy, 2004 Throckmorton PSC, 1712 Claflin Rd, Manhattan, KS 66506, USA
  • Kansas State University, College of Engineering, Department of Biological and Agricultural Engineering, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA
  • Kansas State University, College of Arts and Sciences, Department of Geography and Geospatial Sciences, 1002 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA
Bibliografia
  • Abatzoglou, J.T. and Brown, T.J. (2012) “A comparison of statistical downscaling methods suited for wildfire applications,” International Journal of Climatology, 32(5), pp. 772–780. Available at: https://doi.org/10.1002/joc.2312.
  • Adejuwon, J. (2005) “Assessing the suitability of the EPIC crop model for use in the study of impacts of climate variability and climate change in West Africa,” Singapore Journal of Tropical Geography, 26(1), pp. 44–60. Available at: https://doi.org/10.1111/j.0129-7619.2005.00203.x.
  • Ainsworth, E.A. and Ort, D.R. (2010) “How do we improve crop production in a warming world?,” Plant Physiology, 154(2), pp. 526–530. Available at: https://doi.org/10.1104/pp.110.161349.
  • Araya, A. et al. (2017) “Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM,” Agricultural Systems, 150, pp. 86–98. Available at: https://doi.org/10.1016/j.agsy.2016.10.007.
  • Bao, Y. et al. (2017) “A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data,” Agricultural Systems, 150, pp. 109–119. Available at: https://doi.org/10.1016/j.agsy.2016.10.006.
  • Basak, J. K. et al. (2010) “Assessment of the effect of climate change on boro rice production in Bangladesh using DSSAT model,” Journal of Civil Engineering, 38, pp. 95–108.
  • Battisti, R., Sentelhas, P.C. and Boote, K.J. (2017) “Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil,” Field Crops Research, 200, pp. 28–37. Available at: https://doi.org/10.1016/j.fcr.2016.10.004.
  • Biagini, B. et al. (2014) “Technology transfer for adaptation,” Nature Climate Change, 4, pp. 828–834. Available at: https://doi.org/10.1038/nclimate2305.
  • Cai, X., Wang, D. and Laurent, R. (2009) “Impact of climate change on crop yield: A case study of rainfed corn in Central Illinois,” Journal of Applied Meteorology and Climatology, 48(9), pp. 1868–1881. Available at: https://doi.org/10.1175/2009JAMC1880.1.
  • Challinor, A.J. et al. (2014) “A meta-analysis of crop yield under climate change and adaptation,” Nature Climate Change, 4, pp. 287–291. Available at: https://doi.org/10.1038/nclimate2153.
  • Chhogyel, N., Kumar, L. and Bajgai, Y. (2020) “Consequences of climate change impacts and incidences of extreme weather events in relation to crop production in Bhutan,” Sustainability, 12(10), 4319. Available at: https://doi.org/10.3390/su12104319.
  • Croitoru, A.-E. et al. (2020) “Refining the spatial scale for maize crop agro-climatological suitability conditions in a region with complex topography towards a smart and sustainable agriculture. Case study: Central Romania (Cluj County),” Sustainability, 12 (7), 2783. Available at: https://doi.org/10.3390/su12072783.
  • CSISS (2019) Cropland Data Layer. Fairfax, VA: Center for Spatial Information Science and Systems. Available at: http://nassgeo-data.gmu.edu/CropScape/ (Accessed: April 10, 2024)
  • Dahri, S. H. et al. (2024) “Modelling the impacts of climate change on the sustainability of rainfed and irrigated maize in Pakistan,” Agricultural Water Management, 296, 108794. Available at: https://doi.org/10.1016/j.agwat.2024.108794.
  • Deryng, D. et al. (2014) “Global crop yield response to extreme heat stress under multiple climate change futures,” Environmental Research Letters, 9(3), 034011. Available at: https://doi.org/10.1088/1748-9326/9/3/034011.
  • Eitzinger, A. et al. (2017) “Assessing high-impact spots of climate change: Spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model,” Mitigation and Adaptation Strategies for Global Change, 22(5), pp. 743–760. Available at: https://doi.org/10.1007/s11027-015-9696-2.
  • Estes, L.D. et al. (2013) “Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting,” Global Ecology and Biogeography, 22(8), pp. 1007–1018. Available at: https://doi.org/10.1111/geb.12034.
  • Feddema, J. et al. (2008) Climate change in Kansas. Lawrence: Climate and Energy Project of the Land Institute, Department of Geography, University of Kansas.
  • Goyal, R.K. (2004) “Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India),” Agricultural Water Management, 69(1), pp. 1–11. Available at: https://doi.org/10.1016/j.agwat.2004.03.014.
  • Grassini, P. et al. (2015) “How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis,” Field Crops Research, 177, pp. 49–63. Available at: https://doi.org/10.1016/j.fcr.2015.03.004.
  • Hawkins, E. and Sutton, R. (2011) “The potential to narrow uncertainty in projections of regional precipitation change,” Climate Dynamics, 37(1), pp. 407–418. Available at: https://doi.org/10.1007/s00382-010-0810-6.
  • Hoogenboom, G. et al. (2019) “The DSSAT crop modeling ecosystem,” in K. Boote (ed.) Advances in crop modelling for a sustainable agriculture. Cambridge, UK: Burleigh Dodds Science Publishing, pp. 173–216. Available at: https://doi.org/10.19103/AS.2019.0061.10.
  • Hunt, L.A. and Pararajasingham, S. (1993) “GenCalc: Genotype coefficient calculator, user’s guide, version 2.0,” Crop Science Publication, LAH-01-93. Guelph: University of Guelph.
  • Jin, Z. et al. (2018) “Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest,” Global Change Biology, 24(2), e522-e533. Available at: https://doi.org/10.1111/gcb.13946.
  • Jones, C.A., and J.R. Kiniry (eds.) (1986) CERES-Maize: A simulation model of maize growth and development. College Station: Texas A&M Univ. Press. Available at: https://www.ars.usda.gov/ARSU-serFiles/30980500/CERES-Maize%20Book.pdf (Accessed: April 10, 2024).
  • Jones, J.W. et al. (2003) “The DSSAT cropping system model,” European Journal of Agronomy, 18(3), pp. 235–265. Available at: https://doi.org/10.1016/S1161-0301(02)00107-7.
  • Joos, F. et al. (2001) “Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios,” Global Biogeochemical Cycles, 15(4), pp. 891–907. Available at: https://doi.org/10.1029/2000GB001375.
  • Kassie, B.T. et al. (2016) “Performance of DSSAT-Nwheat across a wide range of current and future growing conditions,” European Journal of Agronomy, 81, pp. 27–36. Available at: https://doi.org/10.1016/j.eja.2016.08.012.
  • Kothari, K. et al. (2019) “Potential climate change adaptation strategies for winter wheat production in the Texas High Plains,” Agricultural Water Management, 225, 105764. Available at: https://doi.org/10.1016/j.agwat.2019.105764.
  • Kucharik, C.J. and Serbin, S. P. (2008) “Impacts of recent climate change on Wisconsin corn and soybean yield trends,” Environmental Research Letters, 3(3), 034003. Available at: https://doi.org/10.1088/1748-9326/3/3/034003.
  • Kumar, R. and Kuttippurath, J. (2024) “Long-term changes in tropospheric temperature in India: Insights from radiosonde measurements, reanalysis data and CMIP6 model projections,” Atmospheric Research, 309, 107583. Available at: https://doi.org/10.1016/j.atmosres.2024.107583.
  • Liu, J. et al. (2019) “Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions,” Science of The Total Environment, 651, pp. 953–968. Available at: https://doi.org/10.1016/j.scitotenv.2018.09.254.
  • Lobell, D.B. and Asseng, S. (2017) “Comparing estimates of climate change impacts from process-based and statistical crop models,” Environmental Research Letters, 12(1), 015001. Available at: https://doi.org/10.1088/1748-9326/aa518a.
  • Lyon, C. et al. (2022) “Climate change research and action must look beyond 2100,” Global Change Biology, 28(2), pp. 349–361. Available at: https://doi.org/10.1111/gcb.15871.
  • Martre, P. et al. (2024) “Global needs for nitrogen fertilizer to improve wheat yield under climate change,” Nature Plants, 10, pp. 1081–1090. Available at: https://doi.org/10.1038/s41477-024-01739-3.
  • McGrath, J.M. et al. (2015) “An analysis of ozone damage to historical maize and soybean yields in the United States,” Proceedings of the National Academy of Sciences, 112(46), pp. 14390–14395. Available at: https://doi.org/10.1073/pnas.1509777112.
  • McVay, K.A. et al. (2006) “Management effects on soil physical properties in long-term tillage studies in Kansas,” Soil Science Society of America Journal, 70(2), pp. 434–438. Available at: https://doi.org/10.2136/sssaj2005.0249.
  • Mera, M., Lizana, X.C. and Calderini, D.F. (2015) “Chapter 6 – Cropping systems in environments with high yield potential of southern Chile,” in V.O. Sadras and D.F. Calderini (eds.) Crop physiology. 2nd edn. Cambridge, MA: Academic Press, pp. 111–140. Available at: https://doi.org/10.1016/B978-0-12-417104-6.00006-6 (Accessed: April 10, 2024).
  • Metz, M., Rocchini, D. and Neteler, M. (2014) “Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail,” Remote Sensing, 6(5), pp. 3822–3840. Available at: https://doi.org/10.3390/rs6053822.
  • Mubeen, M. et al. (2019) “Evaluating the climate change impact on water use efficiency of cotton-wheat in semi-arid conditions using DSSAT model,” Journal of Water and Climate Change, 11(4), pp. 1661–1675. Available at: https://doi.org/10.2166/wcc.2019.179.
  • Nan, W. et al. (2016) “The factors related to carbon dioxide effluxes and production in the soil profiles of rain-fed maize fields,” Agriculture, Ecosystems & Environment, 216, pp. 177–187. Available at: https://doi.org/10.1016/j.agee.2015.09.032.
  • Onyekwelu, I. and Sharda, V. (2024a) “A Bayesian regression approach for estimating photosynthetically active radiation using satellite data: Implications for soybean yield prediction using the CROPGRO model,” Earth Systems and Environment, pp. 1–18. Available at: https://doi.org/10.1007/s41748-024-00391-3.
  • Onyekwelu, I. and Sharda, V. (2024b) “Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change,” Science of The Total Environment, 927, 172205. Available at: https://doi.org/10.1016/j.scitotenv.2024.172205.
  • Petersen, L.K. (2019) “Impact of climate change on twenty-first century crop yields in the U.S.,” Climate, 7(3), 40. Available at: https://doi.org/10.3390/cli7030040.
  • Pörtner, H.-O. et al. (2022) Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/report/ar6/wg2/ (Accessed: April 10, 2024).
  • Prasad, P.V.V., Staggenborg, S.A. and Ristic, Z. (2008) “Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants,” in L.R. Ahuja et al. (eds.) Response of crops to limited water. Hoboken, NJ: John Wiley & Sons, Ltd., pp. 301–355. Available at: https://doi.org/10.2134/advagricsystmodel1.c11.
  • Qin, M. et al. (2023) “Response of wheat, maize, and rice to changes in temperature, precipitation, CO 2 concentration, and uncertainty based on crop simulation approaches,” Plants, 12(14), 2709. Available at: https://doi.org/10.3390/plants12142709.
  • Richetti, J. et al. (2019) “Remotely sensed vegetation index and LAI for parameter determination of the CSM-CROPGRO-Soybean model when in situ data are not available,” International Journal of Applied Earth Observation and Geoinformation, 79, pp. 110–115. Available at: https://doi.org/10.1016/j.jag.2019.03.007.
  • Rosenzweig, C. et al. (2013) “The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies,” Agricultural and Forest Meteorology, 170, 166–182. Available at: https://doi.org/10.1016/j.agrformet.2012.09.011.
  • Sassenrath, G.F., Lingenfelser, J. and Lin, X. (2023) “Corn and soybean production – 2022 summary,” Kansas Agricultural Experiment Station Research Reports, 9(2). Available at: https://doi.org/10.4148/2378-5977.8443.
  • Satta, A. et al. (2017) “Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean region,” International Journal of Disaster Risk Reduction, 24, pp. 284–296. Available at: https://doi.org/10.1016/j.ijdrr.2017.06.018.
  • Schlenker, W. and Roberts, M.J. (2009) “Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change,” Proceedings of the National Academy of Sciences, 106(37), pp. 15594–15598. Available at: https://doi.org/10.1073/pnas.0906865106.
  • Schmidhuber, J. and Tubiello, F.N. (2007) “Global food security under climate change,” Proceedings of the National Academy of Sciences, 104(50), pp. 19703–19708. Available at: https://doi.org/10.1073/pnas.0701976104.
  • Sen, R. (2023) Impact of climate change on the suitability of major crops in the eastern Kansas River basin. Manhattan, KS: Kansas State University.
  • Sen, R., Zambreski, Z.T. and Sharda, V. (2023) “Impact of spatial soil variability on rainfed maize yield in Kansas under a changing climate,” Agronomy, 13(3), 906. Available at: https://doi.org/10.3390/agronomy13030906.
  • Sharda, V. et al. (2021) “Use of multiple environment variety trials data to simulate maize yields in the Ogallala Aquifer Region: A two model approach,” JAWRA Journal of the American Water Resources Association, 57(2), pp. 281–295. Available at: https://doi.org/10.1111/1752-1688.12873.
  • Shin, D.W. et al. (2020) “Future crop yield projections using a multi-model set of regional climate models and a Plausible adaptation practice in the Southeast United States,” Atmosphere, 11(12), 1300. Available at: https://doi.org/10.3390/atmos11121300.
  • Soil Survey Staff (2020) Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS. United States Department of Agriculture, Natural Resources Conservation Service. Available at: https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database (Accessed: April 10, 2024).
  • Soler, C.M.T., Sentelhas, P.C. and Hoogenboom, G. (2007) “Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment,” European Journal of Agronomy, 27(2), pp. 165–177. Available at: https://doi.org/10.1016/j.eja.2007.03.002.
  • Southworth, J. et al. (2000) “Consequences of future climate change and changing climate variability on maize yields in the midwestern United States,” Agriculture, Ecosystems & Environment, 82(1), pp. 139–158. Available at: https://doi.org/10.1016/S0167-809(00)00223-1.
  • Steiner, J.L. et al. M. (2018) “Vulnerability of Southern Plains agriculture to climate change,” Climatic Change, 146(1), pp. 201–218. Available at: https://doi.org/10.1007/s10584-017-1965-5.
  • Stella, T. et al. (2023) “Wheat crop traits conferring high yield potential may also improve yield stability under climate change,” in silico Plants, 5(2), diad013. Available at: https://doi.org/10.1093/insilicoplants/diad013.
  • Taylor, K.E., Stouffer, R.J. and Meehl, G.A. (2012) “An overview of CMIP5 and the experiment design,” Bulletin of the American Meteorological Society, 93(4), pp. 485–498. Available at: https://doi.org/10.1175/BAMS-D-11-00094.1.
  • Thorp, K.R. et al. (2008) “Methodology for the use of DSSAT models for precision agriculture decision support,” Computers and Electronics in Agriculture, 64(2), pp. 276–285. Available at: https://doi.org/10.1016/j.compag.2008.05.022.
  • Rossum van, G. (1995) Python tutorial ver. 1.2. Amsterdam: The Netherlands: Centrum voor Wiskunde en Informatica. Available at: https://ir.cwi.nl/pub/5007/05007D.pdf (Accessed: April 15, 2024).
  • U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) (2021). Gridded Soil Survey Geographic (gSSUR-GO) Database.
  • Wang, S. et al. (2020) “Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive,” Scientific Data, 7, 307. Available at: https://doi.org/10.1038/s41597-020-00646-4.
  • Wart van, J. et al. (2013) “Use of agro-climatic zones to upscale simulated crop yield potential,” Field Crops Research, 143, pp. 44–55. Available at: https://doi.org/10.1016/j.fcr.2012.11.023.
  • Wilkerson, G.G. et al. (1983) “Modeling soybean growth for crop management,” Transactions of the ASAE, 26(1), pp. 0063–0073. Available at: https://doi.org/10.13031/2013.33877.
  • Willmott, C. J. (1982) “Some comments on the evaluation of model performance,” Bulletin of the American Meteorological Society, 63(11), pp. 1309–1313. Available at: https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
  • Yang, H. et al. (2017) “Improvements to the Hybrid-Maize model for simulating maize yields in harsh rainfed environments,” Field Crops Research, 204, pp. 180–190. Available at: https://doi.org/10.1016/j.fcr.2017. 01.019.
  • Yang, J., Yang, K. and Wang, C. (2023) “How desertification in northern China will change under a rapidly warming climate in the near future (2021–2050),” Theoretical and Applied Climatology, 151(1), pp. 935–948. Available at: https://doi.org/10.1007/s00704-022-04315-x.
  • Zhou, W. et al. (2021) “A generic risk assessment framework to evaluate historical and future climate-induced risk for rainfed corn and soybean yield in the U.S. Midwest,” Weather and Climate Extremes, 33, 100369. Available at: https://doi.org/10.1016/j.wace.2021.100369.
  • Zipper, S.C., Qiu, J. and Kucharik, C.J. (2016) “Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes,” Environmental Research Letters, 11(9), 094021. Available at: https://doi.org/10.1088/1748-9326/11/9/094021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9d85ec3-3a63-42b5-b0fb-0ddc21b187a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.