PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Heat Treatment T6 on Selected Properties and Structure of AlSi5Cu2Mg Alloy with Addition of Mo, Zr, and S

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hypoeutectic aluminum alloy AlSi5Cu2Mg is used for the production of high-strength automotive components such as cylinder head castings. AlSi5Cu2Mg alloy is characterized by a specific chemical composition (low permitted Si and Ti content) determined by the supplier. Due to the low permitted Ti content it is impossible to refine the grain structure of this aluminum alloy using standard grain refiners based on Al-Ti-B. Al-Si-Cu-Mg alloys are thermal stable up to the temperature 200°C, due to the presence of strengthening precipitates. Due to the downsizing, the operating temperature exceeds the temperature of 200°C, which leads to a decrease in the mechanical and physical properties of Al-Si-Cu-Mg alloys. The aim of this study is to analyse influence the alloying elements and heat treatment on the selected properties of AlSi5Cu2Mg alloys that are crucial for cylinder head castings. The paper focuces on the evaluation of the influence of selected alloying elements Sr, Zr and Mo on mechanical and physical properties. The present work also analysis the effect of heat treatment T6 on selected properties and structure of AlSi5Cu2Mg alloy modified by Sr, Zr or Mo. Sr, Zr and Mo were added into the AlSi5Cu2Mg alloy in the form of master alloys AlMo10, AlSr10 or AlZr20. According to the findings, the incorporation of the chosen alloying elements did not result in a substantial improvement in the mechanical and physical characteristics of AlSi5Cu2Mg alloy, which would be critical for its practical application. Physical and mechanical properties noted positive increase due to the effect of thermal processing T6.
Słowa kluczowe
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 24 poz., il., tab., wykr.
Twórcy
  • University of Zilina, Slovak Republik
  • University of Zilina, Slovak Republik
autor
  • University of Zilina, Slovak Republik
  • VSB - Technical University of Ostrava: Ostrava, Czech Republik
Bibliografia
  • [1] Yue, Z. & Liu, H. (2023). Advanced research on internal combustion engines and engine fuels. Energies. 16(16), 5940, 1-8. DOI: 10.3390/en16165940.
  • [2] Huang, Y., Surawski, N.C., Zhuang, Y., Zhou, J.L., Hong, G. (2021). Dual injections: an effectice and efficient technology to use renewablte fuels in spark ignition engines. Renewable and Sustainable Energy Reviews. 143, 110921. https://doi.org/10.1016/j.rser.2021.110921.
  • [3] Li, H. & Li, X. (2012). The present situation and the development trend of new materials used in automobile lightweight. Applied Mechanics and Materials. 189, 58-62. DOI: 10.4028/www.scientific.net/AMM.189.58.
  • [4] Czerwinski, F. (2021). Current trends in automotive light weighting strategies and materials. Materials. 14(21), 6631, 1-27. DOI: 10.3390/ma14216631.
  • [5] Zhang, M., Wang, J., Wang. B., Xue, Ch. & Liu, X. (2022). Improving mechanical properties of Al-Si-Cu-Mg alloys by mircroallying sc using thermodynamic calculations. Calphad. 76, 102394, 1-12. DOI:10.1016/j.calphad.2022.102394.
  • [6] Rakhmonov, J., Liu, K. & Chen, G. (2020). Effect of compositional variation on the thermal stability of θ´-Al2Cu precipitates and elevated temperature strengths in Al-Cu 206 alloys. Journal of Materials Engineering and Performance. 29, 7221-7230. DOI: 10.1007/s11665-020-05227-5.
  • [7] Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials. 13(15), 34441, 1-49. DOI: 10.3390/ma13153441.
  • [8] Rakhmonov, J., Timelli, G. & Bonollo, F. (2016). The effect of transition elements on high-temperature mechanical properties of Al-Si foundry alloys-a review. Advanced Engineering Materials. 18(7), 1096-1105. DOI:10.1002/adem.201500468.
  • [9] Morri, A., Ceschini, L., Messieri, S., Cerri, E. & Toschi, S. (2018). Mo addition to the A354 (Al-Si-Cu-Mg) casting alloy: effect on microstructure and mechanical properties at room and high temperature. Metals. 8(6), 393, 1-18. DOI: 10.3390/met8060393.
  • [10] Farkoosh, A.R., Chen, X.G. & Pekguleryuz, M. (2015). Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance. Materials Science and Engineering A. 627, 127-138. DOI: 10.1016/j.msea.2014.12.115.
  • [11] Gao, Ch., Zhang, L. & Zhang, B. (2021). Effect of transition metal elements on high-temperature properties of Al-Si-Cu Mg alloys. Metals. 11(2), 357, 1-12. DOI: 10.3390/met11020357.
  • [12] Bolibruchová, D., Sýkorová, M., Brůna, M., Matejka, M. & Širanec, L. (2023). Effect of Zr addition on selected properties and microstructure of aluminum alloy AlSi5Cu2Mg. International Journal of Metalcasting. 17(4), 2596-2611. DOI: 10.1007/s40962-023-01048-z.
  • [13] Wang, F., Qui, D., Liu, Z., Taylor, J. A., Easton, M. A., Zhang, M. (2013). The grain refinement mechanism of cast aluminium by zirconium. Acta Materialia, 61(15), 5636 5645. DOI: 10.1016/j.actamat.2013.05.044.
  • [14] Sigli, C. (2004). Zirconium solubility in aluminum alloys. Materials Science Forum. 28, 1353-1358.
  • [15] Timpel, M., Wanderka, N., Schlesiger, R. & Yamamoto, T. (2012). The role of strontium in modifying aluminum-silicon alloys. Acta Materialia. 60(9), 3920-3928. DOI: 10.1016/j.actamat.2012.03.031.
  • [16] Sai Ganesh, M. R., Reghunath, N., Levin, M. J., Prasad, A., Doondi, S. & Shankar, K. V. (2021). Strontium in Al-Si-Cu Mg alloy: a review. Metals and Materials International. DOI: 10.1007/s12540-021-01054-y.
  • [17] Ganesh, M., Reghunath, N., Levin, M., Prasad, A., Doondi, S., Shankar, K. (2021). Strontium in Al-Si-Mg Alloy: A Review. Metals and Materials International. DOI: 10.1007/s12540-021-01054-y.
  • [18] Derin, S. & Birol, Y. (2016). Effect of strontium addition on microstructure and mechanical properties of AlSi7Mg0.3 alloy. International Journal of Metalcasting. 11(4), 1-8. DOI:10.1007/s40962-016-0117-4.
  • [19] Bolibruchová, D., Sýkorová, M. & Širanec, L. (2023). Influence of Sr, Zr and Mo on selected properties of AlSi5Cu2Mg alloy. Technológ. 15(2), 52-57. DOI: 10.26552/tech.C.2023.2.8. (Slovak).
  • [20] Weng, W., Nagaumi, H., Sheng, X., Fan, W., Chen, X. & Wang, X. (2019). Influence of silicon phase particles on the thermal conductivity of Al-Si alloys. The Minerals, Metals and Materials Society. 193-198. DOI: 10.1007/978-3-030 05864-7_26.
  • [21] Zhang, A. & Li, Y. (2023). Thermal conductivity of aluminum alloys – a review. Materials. 16(8), 2972, 1-21. DOI: 10.3390/ma16082972.
  • [22] Li, K., Zhang, J., Chen, X., Yin, Y., He, Y., Zhou, Z. & Guan, R. (2020). Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity. Journal of Materials Research and Technology. 9(4), 8780-8786. DOI: 10.1016/j.jmrt.2020.06.021.
  • [23] Gan, J., Huang, Y., Wen, Ch. & Du, J. (2020). Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al-Si alloys. Transactions of Nonferrous Metals Society of China. 30(11), 2879-2890. DOI: 10.1016/S1003-6326(20)65428-0.
  • [24] Tillová, E., Chalupová, M. (2009). Structural analysis of Al Si alloys. Žilina: EDIS. ISBN 978-80-554-0088-4. (in Slovak).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9d5a86a-7c7c-45f2-a1a7-3188d89522ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.