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In the paper, Support Vector Machine (SVM) methods are discussed. The SVM 
algorithm is a very strong classification tool. Its capability in gender recognition in 
comparison with the other methods is presented here. Different sets of face features 
derived from the frontal facial image such as eye corners, nostrils, mouth corners 
etc. are taken into account. The efficiency of different sets of facial features in 
gender recognition using SVM method is examined. 
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1. Introduction 

Support Vector Machine (SVM) is one of the strongest classification methods 
[36-38]. One of the features that can be examined with the help of SVM is gender 
[11, 15-18, 24-27]. There are various gender classifications methods and they can 
be divided into two groups: feature-based and appearance-based methods [32]. 
They are briefly discussed in Section 2. The methods of gender recognition use 
different approaches but usually they are trained and tested on the subsets from the 
same database. When they are tested on the same e.g. FERET database [31] they 
show accuracy around 90%. When the testing and training databases are different, 
the methods’ accuracy drops to 60-70%.  
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In the previous papers [1, 2, [33] we concentrated on the skin color 
classification as well as the general approach to the gender recognition. Finding 
skin color pixel is important in face detection. On finding a face at the picture, e.g. 
[3], one can examine the face to extract its features. After that we examined several 
classification methods of the gender of the face. We derived a conclusion that using 
SVM can provide very good result [33]. Our assumption is also based on a strong 
bibliography research [11, 15-18, 24-27].   

It must be taken into account that computer designed methods and 
applications are also suitable for mobile devices. The mobile apps can have the 
same functionality as the desktop ones, but mobile devices have often worse 
hardware specification. 

Many authors have presented works using SVM in the context of facial 
recognition [11, 16-18, 24-27, 39, 40]. However, there are no works showing the 
possibility of using facial geometry features in the SVM classification [45]. The 
authors used the appearance-based methods. There are also no works focused on 
the problem of choosing a minimum set of features that can give satisfactory 
results. This problem can be important in mobile devices. In this paper, we want to 
show that it is possible to use only two geometric facial features to construct a 
classifier that gives satisfactory (though not always optimal) results. 

The paper is organized as follows. Section 2 presents a brief  description of 
gender classification methods including various face recognition aspects. In 
Section 3, Support Vector Machine (SVM) method is presented. Section 4 presents 
Alex Martinez face database and the sets of features we derived from it for the 
research presented in the paper. A brief description of face databases like the 
FERET one is also provided here. Section 5 presents the method of facial features 
extraction from the images from AR database [43]. Next, we show the results  of 
using different subsets of the whole set of the facial features using SVM method to 
find the best results of the gender classification. Section 6 contains the discussion 
and conclusions regarding the use of the presented classification methods in mobile 
applications, too.

2. Gender classification methods 

Gender determination is often the first step in the automatic 
recognition/authentication process. This process have to start with finding face area 
on the image. It can be done by skin color pixels detecting. Then the area of the 
skin color pixels is checked whether it can be classified as a face e.g. using 
template matching methods. The several approaches to the skin color classification 
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were presented in our previous papers [1, 2]. Nowadays, there is a method very 
popular and helpful in face detection that was presented by Viola and Jones [3]. On 
finding a face at the picture, e.g. [3], one can examine the face to extract their 
feature for future processing. 

The second step in the process of gender recognition is feature extraction.  
In the gender recognition task, we can distinguish two methods of feature 
extraction: geometric based and appearance based. The first one requires finding 
the facial characteristic points as nose, mouth, eyes, ears or hair, called fiducial 
points. The geometric relation between these points (fiducial distances) are used as 
a feature vector in the classification process. The importance of these distances in 
the gender discrimination tasks is confirmed by the psychophysical studies  
[4, 14, 28-30]. 

Appearance based methods works on the pixel values of images that were 
previously transformed on the local or global level. At the local level, the image 
can be divided e.g. into lower windows or specific face regions such as mouth, 
nose or eyes. This approach preserves natural geometric relationships which can be 
used as naïve features. This approach can be very computationally demanding 
because of a very large number of features because each pixel is treated as a 
feature. In our research we decided to use geometric facial features. 

The third step in the gender recognition process it is choosing the proper 
classification method. In the gender recognition task various classification methods 
are used: neural network [7, 8], hyper basis function networks [4], radial basis 
function networks [5], Gabor wavelets [6, 9], Adaboost [10, 12, 13], Support 
Vector Machines (SVM) [11], linear discriminant analysis (LDA) [11], Self 
Organizing Maps (SOM) [13], Bayesian classifiers [11] etc. In Table 1 we show 
the selected works that use different classification methods. It can be seen that the 
most popular classifier is SVM.  

The best results were reported by Zheng et al. [26] - for CAS-PEAL database– 
99.8%, and for FERET database 99.1%. However, Zheng et al. selected only 
frontal face images from the datasets. Based on the results presented in Tab. 1 the 
best classification efficiency was obtained with the SVM algorithm that is why we 
also use it in our research.  

Table 2 presents the results for the FERET database and the Web testing 
databases conducted by Makinen and Raisamo [32]. These authors compared the 
selected gender recognition methods using the same preprocessing and testing 
methods as original authors. In the first case separate sets of the FERET images 
were used for training. In the second case all FERET datasets were used for 
training. 
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Table 1. Comparison of the selected gender classification methods 

Author Classifier Training data Test data Efficiency [%] 

1 Moghaddam (2002) 
[15] 

SVM-RBF FERET cross validation 96.62 

2 Shakhnarovich (2002) 
[10] 

Adaboost Web images cross validation
video seq. 

79.00 
90.00 

3 Sun (2002) [11] SVM UNR cross validation 95.30 

4 Castrillon (2003) [16] SVM+ 
temporal fusion

Video frames  98.57 

5 Buchala (2005) [17] SVM –RBF Mix (FERET, 
AR, BioID) 

cross validation 92.25 

6 Jain (2005) [18] SVM FERET FERET 95.67 

7 Baluja (2006) [19] Adaboost FERET cross validation 94.30 

8 Fok (2006) [20] Convolutional 
neural net. 

FERET cross validation 97.20 

9 Aghajanian (2009) 
[21] 

Bayesian Web images Web images 89.00 

10 Demirkus (2010) [22] Bayesian FERET Video seqs. 90.00 

11 Wang (2010) [23] Adaboost Mix (FERET, 
CAS-EAL , 

Yale) 

cross validation ~97.00 

12 Alexandre (2010) [24] SVM-linear FERET FERET 99.07

13 Li (2011) [25] SVM FERET FERET 95.80 

14 Zheng (2011) [26] SVMAC FERET 
CAS-PEAL 

FERET 
CAS-PEAL 

99.10 
99.80 

15 Shan (2012) [27] SVM-RBF LFW cross validation 94.80 

Table 2. Results for the FERET images 

 FERET images without hair Web images without hair 

Method  Classification rate [%] Classification rate [%] 

Neural network 92.22 65.95 

SVM 88.89 66.48 

Threshold Adaboost 86.67 66.29 

LUT Adaboost 88.89 66.19 

Mean Adaboost 88.33 66.14 

LBP + SVM 80.56 67.25 

Source: based on the Mäkinen E., Raisamo R. [32]
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It can be seen that the results obtained for the FERET testing set are 
significantly better than the results obtained for the web images. It can be a result 
of a greater similarity of the training and testing sets when FERET set are used in 
both cases. The other reason is that  the web images used as a testing set have more 
quality variations, so they are more difficult to be classified correctly. 

3. Support Vector Machine in gender classification 

In the SVM algorithm data is divided into two groups using the decision 
function specified by a subset of training samples called Support Vectors [36-38]. 
Support vectors are the data points that lie in the closest distance to the decision 
surface and using them the hyperplane margin can be maximized. . Optimal 
separation is achieved by the hyperplane that has the largest distance to the nearest 
training-data point of any class.. If the original feature space is not well-
conditioned (dataset is not linearly separable) it can be mapped to a higher 
dimensional feature space where the training set is likely separable. The SVM 
provides non-linear function approximations by mapping the input vectors into a 
high dimensional feature space where a linear hyperplane can be constructed. 
Although there is no guarantee that a linear hyperplane will always exist in the 
higher dimensional feature space. In practice it is quite possible to construct a 
linear SVM in the projected space. The optimal hyperplane is in the form of: 
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where k is the kernel function, while f(x) determines the category of x. Constructing 
an optimal hyperplane is equivalent to determining nonzero �i. Any vector xi that 
corresponds to a nonzero �i is a supported vector of the optimal hyperplane. The 
number of support vectors is usually small and it allows producing a compact 
classifier. 

Choosing the most appropriate kernel function depends highly on the problem 
at hand and fine tuning its parameters can easily become a tedious and 
cumbersome task. The motivation behind the choice of a particular kernel can be 
very intuitive and straightforward depending on what kind of information we are 
expecting to extract from the data. The kernel function needs to be a scalar product 
in some feature space. A sufficient condition is that the kernel matrix is positive. 
Some common kernel functions that fulfill this condition are e.g.: 

• the polynomial kernel 
dT cyaxyxk )(),( +=      (2) 
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• Gaussian kernel or Gaussian Radial Basis Function (RBF) 
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• exponential kernel 
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In our experiments Gaussian kernel function has been used because of the best 
results it gave.  

SVMs can be used to solve various problems. Experimental results show that 
SVMs achieve significantly higher search accuracy than traditional query 
refinement schemes. Gender classification can be carried out with the use of 
different methods, like LDA or Fisher’s Algorithm. In Fisher’s Algorithm we have 
to calculate the Eigen vectors and its value for training data which can be skipped 
in SVM. SVM is very often used in the gender recognition problem as one of the 
algorithms, which provides the best results [26, 39-42]. 

4. Facial databases 

The FERET database [31] is the most often used as a training set for gender 
classifiers. The classification efficiency is the ratio of correctly classified test 
examples to the total number of test examples. The most popular method of results 
testing is cross validation, but many authors report also that they train and test 
results on the different datasets [32]. 

The comparison of various facial recognition methods based on their 
classification efficiency is very difficult, because researchers use different datasets 
and parameters for their methods evaluation. Even if authors use the same FERET 
database, they don’t have to use the whole of it. They can select the different 
subsets of images which are more or less difficult to classify. In our experiments, 
we used a part of  AR face database [43] containing frontal facial images without 
expressions. The AR face database was created by Aleix Martinez and Robert 
Benavente in the Computer Vision Center (CVC) at the U.A.B. It contains over 
4,000 color images corresponding to 126 people's faces (70 men and 56 women). 
Images show frontal view faces with different facial expressions, illumination 
conditions, and occlusions (sun glasses and scarfs). The pictures were taken at the 
CVC under strictly controlled conditions. Images are of 768×576 pixel resolution 
and of 24 bits of depth. 

We used a subset containing 92 frontal face images: 49 women and 43 men. 
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5. Results of classification using Support Vector Machine  

In our research we have taken into account 11 facial characteristic points 
(Fig.1): RO - right eye outer, RI – right eye inner, LI - left eye inner, LO - left eye 
outer, , RS and LS – right and left extreme face point at eye level, MF- forehead 
point, M – nose bottom point, MM – mouth central point, MC – chin point and Oec, 
the anthropological face point has coordinates derived as an arithmetical mean 
value of the points RI and LI. The points were marked on each image manually. 
These features were described in [30], 34, [34] and are only a part of facial 
geometric features described in [14]. The coordinates are bounded with Oec point 
and their values are recalculated in Muld units [30], [34], where 

mmMuld 5.0101 ±=      (5) 

Muld is equal to a diameter of the person iris and it is constant for each person 
from 4-5 year of his/her life [44]. For each picture Muld unit was measured 
separately and all coordinates and distances are also denoted in that unit. Hence, 
the face is scaled in the person own Muld unit [34][35]. 

The chosen points allowed to define 7 distances which are used as a features 
in the classification process: 

1. Distance between anthropological point and mouth center, further referred 
shortly as MM. 

2. Distance between anthropological point and chin point (MC) 
3. Chin/jaw height (MC-MM).  
4. Distance between nose-end point and chin point (MC-M). 
5. Face width at eye level (RSLS). 
6. Distance between outer eye corners (ROLO). 
7. Face height (MF-MC). 

Figure1. Face characteristic points [34, [34], image from [43] 
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It is important to create mobile classification applications but mobile devices 
have very various hardware and OS specifications. That is why our aim has been to 
build classifiers as simple as possible. In our research, from the set of features 
described and derived above we have taken subsets and test classification 
efficiency using that subsets. We want to choose a minimal feature subset or 
subsets that will give the best classification results.  

The results of the experiments presented in Table 3 have shown that the 
classification error is smaller than in the methods shown in Table 2. It means that 2 
features are sufficient to obtain  satisfactory classification results. The best results 
are shown in Table 3.  

Cross validation method was used to verified the classification results. Eight 
sets of 10 objects (5 women and 5 men) were used. The best results we obtained 
using 2 features: distance between eye outers and distance from anthropological 
point to the chin point. For this pair error rate is 17,5 %. 

Table 3. Results for all sets of 2 features 

 Features 1 MM 2 MC 3 MC-MM 4 MC-M 5 RSLS 6 ROLO 7 MF-MC

1MM X 72,5% 76,3% 72,5% 76,3% 73,8% 70,0%

2 MC   X 72,5% 75,0% 76,25% 82,5% 70,0%

3 MC-MM     X 67,5% 71,3% 53,8% 70,0%

4MC-M       X 77,5% 77,5% 73,8%

5RSLS         X 68,8% 73,8%

6 ROLO           X 65,0%

6. Discussion and conclusions  

In our research, we choose from the set of features described and derived in 
Sec. 4 subsets having 2 features. The classification efficiency of the SVM 
algorithm was evaluated by using that subsets. We wanted to show that such a 
minimal feature subset (2-elements) can also give satisfactory classification results. 
It has appeared that one feature connected with the height and one connected with 
the width of the face can give the classification rate around 82%. 

In the paper, we focused on gender classification using SVM method and 
testing it in the mobile applications. Because of the mobile hardware variety and 
different OS specifications we built classifier as simple as possible. The results of 
classification presented in Table 3 vary from the results shown in Table 2 for web 
images even if we used only 2 features to the classification. Nonetheless, that 
classification based on 2 features is very easy to implement and utilize in mobile 
applications. 
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