Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dynamical reconstruction of unknown time-varying controls from inexact measurements of the state function is investigated for a semilinear parabolic equation with memory. This system includes as particular cases the Schlögl model and the FitzHugh–Nagumo equations. A numerical method is suggested that is based on techniques of feedback control. An error analysis is performed. Numerical examples confirm the theoretical predictions.
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya St., Yekaterinburg, 620990 Russia; Graduate School of Economics and Management, Ural Federal University, 19 Mira St., Yekaterinburg, 620002 Russia
autor
- Institute of Mathematical Sciences, Technical University of Berlin, Str. des 17. Juni 136, D-10623, Berlin, Germany
Bibliografia
- [1] Avdonin, S. and Bell, J. (2015). Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Journal of Inverse Problems and Imaging 9(3): 645–659.
- [2] Banks, H.T. and Kunisch, K. (1989). Estimation Techniques for Distributed Parameter Systems, Birkhäuser, Boston, MA.
- [3] Barbu, V. (1990). The inverse one phase Stefan problem, Differential Integral Equations 3(2): 209–218.
- [4] Breiten, T. and Kunisch, K. (2014). Riccati-based feedback control of the monodomain equations with the FitzHugh–Nagumo model, SIAM Journal of Control and Optimization 52(6): 4057–4081.
- [5] Buchholz, R., Engel, H., Kammann, E. and Tröltzsch, F. (2013). On the optimal control of the Schlögl-model, Computational Optimization and Application 56(1): 153–185.
- [6] Casas, E., Ryll, C. and Tröltzsch, F. (2013). Sparse optimal control of the Schlögl and FitzHugh–Nagumo systems, Computational Methods in Applied Mathematics 13(4): 415–442.
- [7] Evans, L.C. (1998). Partial Differential Equations, American Mathematical Society, Providence, RI. Gugat, M. and Tröltzsch, F. (2015). Boundary feedback stabilization of the Schlögl system, Automatica 51(C): 192–199.
- [8] Jackson, D.E. (1990). Existence and regularity for the FitzHugh–Nagumo equations with inhomogeneous boundary conditions, Nonlinear Analysis: Theory, Methods & Applications A: Theory and Methods 14(3): 201–216.
- [9] Kabanikhin, S.I. (2011). Inverse and Ill-posed Problems, De Gruyter, Berlin.
- [10] Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretical Control Problems, Springer Verlag, New York, NY/Berlin.
- [11] Kryazhimskii, A.V., Osipov, Yu. S., (1995). Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London.
- [12] Lasiecka, I., Triggiani, R., and Yao, P.F. (1999). Inverse/observability estimates for second order hyperbolic equations with variable coefficients, Journal of Mathematical Analysis and Applications 235(1): 13–57.
- [13] Lavrentiev, M.M., Romanov, V.G., and Shishatskii, S.P. (1980). Ill-posed Problems of Mathematical Physics and Analysis, Nauka, Novosibirsk, (in Russian).
- [14] Le, M.H.L. (2019). Eine Methode der Steuerungs-Rekonstruktion bei semilinearen parabolischen Differentialgleichungen, Master thesis, Technische Universität Berlin, Berlin.
- [15] Maksimov, V. (2002). Dynamical Inverse Problems of Distributed Systems, VSP, Utrecht/Boston, MA.
- [16] Maksimov, V. (2009). On reconstruction of boundary controls in a parabolic equations, Advances in Differential Equations 14(11–12): 1193–1211.
- [17] Maksimov, V. (2016). Game control problem for a phase field equation, Journal Optimization Theory and Applications 170(1): 294–307.
- [18] Maksimov, V. (2017). Some problems of guaranteed control of the Schlögl and FitzHugh–Nagumo systems, Evolution Equations and Control Theory 6(4): 559–586.
- [19] Maksimov, V. and Mordukhovich, B.S. (2017). Feedback design of differential equations of reconstruction for second-order distributed systems, International Journal of Applied Mathematics and Computer Science 27(3): 467–475, DOI: 10.1515/amcs-2017-0032.
- [20] Maksimov, V. and Pandolfi, L. (2002). The problem of dynamical reconstruction of Dirichlet boundary control in semilinear hyperbolic equations, Journal of Inverse and Ill-Posed Problems 8(4): 399–411.
- [21] Mordukhovich, B.S. (2008). Optimization and feedback design of state-constrained parabolic systems, Pacific Journal of Optimization 4(3): 549–570.
- [22] Ryll, C., Löber, J., Martens, S., Engel, H., and Tröltzsch, F. (2016). Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, in F. Schöll et al. (Eds.), Control and Self-Organizing Nonlinear Systems, Springer, Berlin, pp. 189–210.
- [23] Samarskii, A.A. (1971). Introduction to the Theory of Difference Schemes, Nauka, Moscow, (in Russian).
- [24] Shitao, L. and Triggiani, R. (2013). Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace, Discrete and Continuous Dynamical Systems 33(11&12): 5217–5252.
- [25] Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of Ill-posed Problems, V.H. Winston & Sons, Washington, DC.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9c7b0f8-81f2-434d-affd-66c63ed54390