PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using artificial intelligence for sustainable crop production - a comprehensive review with a focus on potato production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the critical role of artificial intelligence (AI) in modern agriculture, with a particular focus on potato production. AI technologies are becoming essential tools enhancing both efficiency and sustainability in farming practices. By utilizing big data analysis, precision monitoring, and automation, AI can significantly improve agricultural outcomes. For instance, AI algorithms can optimise the use of natural resources and chemical inputs, leading to improved yield forecasting and more effective management of diseases and pests that affect crops. Additionally, AI can play a key role in agriculture with is its capability to monitor soil conditions and assess soil fertility. This enables farmers to optimise fertilisation techniques, leading to improved crop health but also better water management through precise irrigation practices. These advancements are especially crucial in addressing the rising food demand posed by global population growth, while simultaneously managing limited environmental resources. Despite the numerous benefits offered by AI, its implementation in agriculture faces challenges. High technology costs and the need for extensive education and training for farmers can hinder widespread AI adoption. Therefore, future research should aim at developing affordable AI solutions and comprehensive training programmes to maximise the technology's potential in fostering enhanced sustainable food production globally.
Wydawca
Rocznik
Tom
Strony
181--193
Opis fizyczny
Bibliogr. 89 poz., tab.
Twórcy
  • Pomeranian University in Słupsk, Institute of Biology, Department of Botany and Nature Protection, Arciszewskiego St, 22B, 76-200 Słupsk, Poland
Bibliografia
  • Abdel-Hameed, A.M. et al. (2024) “Estimation of potato water footprint using machine learning algorithm models in arid regions,” Potato Research, 67, pp. 1755–1774. Available at: https://doi.org/10.1007/s11540-024-09716-1.
  • Abdelhamid, A.A. et al. (2024) “Potato harvesting prediction using an improved ResNet-59 Model,” Potato Research [Preprint]. Available at: https://doi.org/10.1007/s11540-024-09773-6.
  • Abioye, E.A. et al. (2022) “Precision irrigation management using machine learning and digital farming solutions,” AgriEngineering, 4(1), pp. 70–103. Available at: https://doi.org/10.3390/agriengineering4010006.
  • Ahmad, U. and Sharma, L. (2023) “A review of best management practices for potato crop using precision agricultural technologies,” Smart Agricultural Technology, 4, 100220. Available at: https://doi.org/10.1016/j.atech.2023.100220.
  • Akhter, R. and Sofi, S.A. (2022) “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University – Computer and Information Sciences, 34(8), pp. 5602– 5618. Available at: https://doi.org/10.1016/j.jksuci.2021.05.013.
  • Al-Zubaidi, Y.A.T. et al. (2019) “An Integrated Expert Water Management (IEWM) with IoT,” International Journal of Innovative Technology and Exploring Engineering, 9(2), pp. 3835–3839. Available at: https://doi.org/10.35940/ijitee. B7269.129219.
  • Araújo, S.O. et al. (2023) “Machine learning applications in agriculture: Current trends, challenges, and future perspectives,” Agronomy, 13(12), 2976. Available at: https://doi.org/10.3390/agronomy13122976.
  • Aslan, M.F., Sabanci, K. and Aslan, A. (2024) “Artificial intelligence techniques in crop yield estimation based on Sentinel-2 Data: A comprehensive survey,” Sustainability, 16(18), 8277. Available at: https://doi.org/10.3390/su16188277.
  • Awais, M. et al. (2023) “AI and machine learning for soil analysis: An assessment of sustainable agricultural practices,” Bioresources and Bioprocessing, 10(1), 90. Available at: https://doi.org/10.1186/s40643-023-00710-y.
  • Bali, N. and Singla, A. (2022) “Emerging trends in machine learning to predict crop yield and study its influential factors: A survey,” Archives of Computational Methods in Engineering, 29(1), pp. 95–112. Available at: https://doi.org/10.1007/s11831-021-09569-8.
  • Barrios-Ulloa, A. et al. (2023) “Modeling of path loss for radio wave propagation in wireless sensor networks in cassava crops using machine learning,” Agriculture, 13(11), 2046. Available at: https://doi.org/10.3390/agriculture13112046.
  • Cambouris, A.N. et al. (2006) “Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties,” American Journal of Potato Research, 83(5), pp. 381–395. Available at: https://doi.org/10.1007/BF02872015.
  • Cambouris, A.N. et al. (2014) “Precision agriculture in potato production,” Potato Research, 57(3–4), pp. 249–262. Available at: https://doi.org/10.1007/s11540-014-9266-0.
  • Cao, J. et al. (2021) “Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches,” Agricultural and Forest Meteorology, 297, 108275. Available at: https://doi.org/10.1016/j.agrformet.2020.108275.
  • Chaithra, C. et.al. (2021) “Sensor and SMI based irrigation management in maize [Zea mays (L.)] to enhance growth, yield and water use efficiency,” Biological Forum – An International Journal, 13(4), pp. 349–352. Available at: https://www.researchtrend.net/bfij/pdf/60%20Sensor%20and%20SMI%20based%20Irrigation%20Management%20in%20Maize%20[Zea%20mays%20L.]%20to%20Enhance%20Growth,%20Yield%20and%20Water%20Use%20Efficiency%20Chaithra,%20C.pdf (Accessed: November 02, 2024).
  • Chen, J.M. (1996) “Evaluation of vegetation indices and a modified simple ratio for Boreal Applications,” Canadian Journal of Remote Sensing, 22(3), pp. 229–242. Available at: https://doi.org/10.1080/07038992.1996.10855178.
  • Coulibali, Z., Cambouris, A.N. and Parent, S.-É. (2020) “Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada,” PLOS ONE, 15(8), e0230888. Available at: https://doi.org/10.1371/journal.pone.0230888.
  • Cravero, A. et al. (2022) “Challenges to use machine learning in agricultural big data: A systematic literature review,” Agronomy, 12(3), 748. Available at: https://doi.org/10.3390/agronomy12030748.
  • Delegido, J. et al. (2013) “A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems,” European Journal of Agronomy, 46, pp. 42–52. Available at: https://doi.org/10.1016/j.eja.2012.12.001.
  • Denora, M. et al. (2022) “Validation of rapid and low-cost approach for the delineation of zone management based on machine learning algorithms,” Agronomy, 12(1), 183. Available at: https://doi.org/10.3390/agronomy12010183.
  • Di, X. et al. (2024) “Advances in the modulation of potato tuber dormancy and sprouting,” International Journal of Molecular Sciences, 25(10), 5078. Available at: https://doi.org/10.3390/ijms25105078.
  • Dubois, A., Teytaud, F. and Verel, S. (2021) “Short term soil moisture forecasts for potato crop farming: A machine learning approach,” Computers and Electronics in Agriculture, 180, 105902. Available at: https://doi.org/10.1016/j.compag.2020.105902.
  • El-Kenawy, E.-S.M. et al. (2024) “Predicting potato crop yield with machine learning and deep learning for sustainable agriculture,” Potato Research [Preprint]. Available at: https://doi.org/10.1007/s11540-024-09753-w.
  • Elshaikh, A., Elsiddig Elsheikh, S. and Mabrouki, J. (2024) “Applications of artificial intelligence in precision irrigation,” Journal of Environmental & Earth Sciences, 6(2), pp. 176–186. Available at: https://doi.org/10.30564/jees.v6i2.6679.
  • Emadi, M. et al. (2020) “Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran,” Remote Sensing, 12(14), 2234. Available at: https://doi.org/10.3390/rs12142234.
  • FAO (2024) Crops and livestock products. FAOSTAT. Available at: https://www.fao.org/faostat/en/#data/QCL (Accessed: November 02, 2024).
  • FAO (no date) Soil maps and databases. Rome: Food and Agriculture Organization. Available at: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/ (Accessed: January 27, 2023).
  • Folorunso, O. et al. (2023) “Exploring machine learning models for soil nutrient properties prediction: A systematic review,” Big Data and Cognitive Computing, 7, 113. Available at: https://doi.org/10.3390/bdcc7020113.
  • Fujiyoshi, P.T. et al. (2021) “Detection of spores of causal fungi of dieback-type trunk diseases in young, asymptomatic vineyards and mature, symptomatic vineyards,” Crop Protection, 150, 105798. Available at: https://doi.org/10.1016/j.cropro.2021.105798.
  • Gómez, D. et al. (2019) “Potato yield prediction using machine learning techniques and Sentinel 2 Data,” Remote Sensing, 11(15), 1745. Available at: https://doi.org/10.3390/rs11151745.
  • Guo, Y. et al. (2019) “Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region,” Field Crops Research, 243, 107615. Available at: https://doi.org/10.1016/j.fcr.2019.107615.
  • GUS (2024) Wynikowy szacunek głównych ziemiopłodów rolnych i ogrodniczych w 2023 roku [The estimated yield of major agricultural and horticultural crops in 2023]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze (Accessed: November 02, 2024).
  • Hara, P., Piekutowska, M. and Niedbała, G. (2021) “Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data,” Land, 10(6), 609. Available at: https://doi.org/10.3390/land10060609.
  • Hosseini, M. et al. (2021) “Artificial intelligence statistical analysis of soil respiration improves predictions compared to regression methods,” Journal of Soil Science and Plant Nutrition, 21(3), pp. 2242–2251. Available at: https://doi.org/10.1007/s42729-021-00517-w.
  • Hounkpatin, K.O.L. et al. (2022) “Assessment of the soil fertility status in Benin (West Africa) – Digital soil mapping using machine learning,” Geoderma Regional, 28, e00444. Available at: https://doi.org/10.1016/j.geodrs.2021.e00444.
  • Hoy, K.A. and Wrenn, D.H. (2020) “The effectiveness of taxes in decreasing candy purchases,” Food Policy, 97, 101959. Available at: https://doi.org/10.1016/j.foodpol.2020.101959.
  • Huete, A. (1988) “A soil-adjusted vegetation index (SAVI),” Remote Sensing of Environment, 25(3), pp. 295–309. Available at: https://doi.org/10.1016/0034-4257(88)90106-X.
  • Jakubowski, T. and Królczyk, J.B. (2020) “Method for the reduction of natural losses of potato tubers during their long-term storage,” Sustainability, 12(3), 1048. Available at: https://doi.org/10.3390/su12031048.
  • Javaid, M. et al. (2023) “Understanding the potential applications of artificial intelligence in agriculture sector,” Advanced Agrochem, 2(1), pp. 15–30. Available at: https://doi.org/10.1016/j.aac.2022.10.001.
  • Jimenez-Lopez, F.-R., Ruge-Ruge, I.-A. and Jimenez-Lopez, A.-F. (2021) “Deep learning techniques applied to predict the irrigation prescription for potato crops in Boyacá,” in 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaíso, Chile 06–09 Dec 2021. Piscataway Township, NJ: IEEE, pp. 1–8. Available at: https://doi.org/10.1109/CHILECON54041.2021.9703064.
  • Kadigi, I.L. et al. (2020) “The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach,” Agricultural Systems, 185, 102948. Available at: https://doi.org/10.1016/j.agsy.2020.102948.
  • Kariyanna, B. and Sowjanya, M. (2024) “Unravelling the use of artificial intelligence in management of insect pests,” Smart Agricultural Technology, 8, 100517. Available at: https://doi.org/10.1016/j.atech.2024.100517.
  • Kempenaar, C. et al. (2017) “Advances in variable rate technology application in potato in The Netherlands,” Potato Research, 60(3–4), pp. 295–305. Available at: https://doi.org/10.1007/s11540-018-9357-4.
  • Khorramifar, A. et al. (2021) “A machine learning method for classification and identification of potato cultivars based on the reaction of MOS Type Sensor-Array,” Sensors, 21(17), 5836. Available at: https://doi.org/10.3390/s21175836.
  • Khorramifar, A. et al. (2023) “Determining the shelf life and quality changes of potatoes (Solanum tuberosum) during storage using electronic nose and machine learning,” PLOS ONE, 18(4), e0284612. Available at: https://doi.org/10.1371/journal. pone.0284612.
  • Kiełbasa, P. (2020) “Porównanie zróżnicowania przewodności elektrycznej gleby wykonanej urządzeniem Topsoil Mapper i jej charakterystyk penetrometrycznych [Comparison of the variability of soil electrical conductivity measured with the topsoil mapper and its penetrometric characteristics],” Przegląd Elektryczny, 1(1), pp. 148–152. Available at: https://doi.org/10.15199/48.2020.01.32.
  • Kumar, J. et al. (2023) “Optimizing irrigation and nutrient management in agriculture through artificial intelligence implementation,” International Journal of Environment and Climate Change, 13(10), pp. 4016–4022. Available at: https://doi.org/10.9734/ijecc/2023/v13i103077.
  • Kurek, J. et al. (2023) “Prediction of potato (Solanum tuberosum L.) yield based on machine learning methods,” Agriculture, 13(12), 2259. Available at: https://doi.org/10.3390/agriculture13122259.
  • Kutyauripo, I., Rushambwa, M. and Chiwazi, L. (2023) “Artificial intelligence applications in the agrifood sectors,” Journal of Agriculture and Food Research, 11, 100502. Available at: https://doi.org/10.1016/j.jafr.2023.100502.
  • Liu, N. et al. (2020) “Growth stages classification of potato crop based on analysis of spectral response and variables optimization,” Sensors, 20(14), 3995. Available at: https://doi.org/10.3390/s20143995.
  • Liu, Y. et al. (2022) “Estimation of potato above-ground biomass using UAV-based hyperspectral images and machine-learning regression,” Remote Sensing, 14(21), 5449. Available at: https://doi.org/10.3390/rs14215449.
  • Liu, X.-F. et al. (2023) “Artificial intelligence-based fiber optic sensing for soil moisture measurement with different cover conditions,” Measurement, 206, 112312. Available at: https://doi.org/10.1016/j.measurement.2022.112312.
  • Luo, S. et al. (2019) “Comparison of the retrieving precision of potato leaf area index derived from several vegetation indices and spectral parameters of the continuum removal method,” European Journal of Remote Sensing, 52(1), pp. 155–168. Available at: https://doi.org/10.1080/22797254.2019.1572460.
  • Luo, S. et al. (2020) “Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage,” Plant Methods, 16(1), 150. Available at: https://doi.org/10.1186/s13007-020-00693-3.
  • Maia, R.F., Lurbe, C.B. and Hornbuckle, J. (2022) “Machine learning approach to estimate soil matric potential in the plant root zone based on remote sensing data,” Frontiers in Plant Science, 13, 931491. Available at: https://doi.org/10.3389/fpls.2022.931491.
  • Mazur, P., Gozdowski, D. and Wójcik-Gront, E. (2022) “Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones,” Agriculture, 12 (6), 883. Available at: https://doi.org/10.3390/agriculture12060883.
  • Meshram, V. et al. (2021) “Machine learning in agriculture domain: A state-of-art survey,” Artificial Intelligence in the Life Sciences, 1, 100010. Available at: https://doi.org/10.1016/j.ailsci.2021.100010.
  • Mukiibi, A. et al. (2024) “A systematic review of vegetation indices for potato growth monitoring and tuber yield prediction from remote sensing,” Potato Research [Preprint]. Available at: https://doi.org/10.1007/s11540-024-09748-7.
  • Nawar, S. et al. (2017) “Delineation of soil management zones for variable-rate fertilization,” Advances in Agronomy, 143, pp. 175– 245. Available at: https://doi.org/10.1016/bs.agron.2017.01.003.
  • Niedbała, G. and Piekutowska, M. (2018) “Application of artificial neural networks for the prediction of quality characteristics of potato tubers – Innovator variety,” Journal of Research and Applications in Agricultural Engineering, 64(4), pp. 132–138. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e0da8e06-bb01-4817-ad9a-df96166e63d0 (Accessed: November 02, 2024).
  • Osipov, A., Filimonov, A. and Suvorov, S. (2021) “Applying machine learning techniques to identify damaged potatoes,” in L. Rutkowski et al. (eds.) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science, 12854. Cham: Springer, pp. 193–201. Available at: https://doi.org/10.1007/978-3-030-87986-0_17.
  • Patnaik, P.P. and Padhy, N. (2022) “An approach for potato yield prediction using machine learning regression algorithms,” in R. Kumar et al. (eds.) Next generation of Internet of things. Lecture Notes in Networks and Systems, 445. Singapore: Springer, pp. 327–336. Available at: https://doi.org/10.1007/978-981-19-1412-6_27.
  • Paudel, D. et al. (2021) “Machine learning for large-scale crop yield forecasting,” Agricultural Systems, 187, 103016. Available at: https://doi.org/10.1016/j.agsy.2020.103016.
  • Pavlović, T. et al. (2020) “Linden tea from Serbia – an insight into the phenolic profile, radical scavenging and antimicrobial activities,” Industrial Crops and Products, 154, 112639. Available at: https://doi.org/10.1016/j.indcrop.2020.112639.
  • Peng, J. et al. (2021) “Environmental constraints to net primary productivity at northern latitudes: A study across scales of radiation interception and biomass production of potato,” International Journal of Applied Earth Observation and Geoinformation, 94, 102232. Available at: https://doi.org/10.1016/j. jag.2020.102232.
  • Piekutowska, M. et al. (2021) “The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest,” Agronomy, 11(5), 885. Available at: https://doi.org/10.3390/agronomy11050885.
  • Politi, E., Cutler, M.E.J. and Rowan, J.S. (2012) “Using the NOAA advanced very high resolution radiometer to characterise temporal and spatial trends in water temperature of large European lakes,” Remote Sensing of Environment, 126, pp. 1– 11. Available at: https://doi.org/10.1016/j.rse.2012.08.004.
  • Qaswar, M., Bustan, D. and Mouazen, A.M. (2024) “Economic and environmental assessment of variable rate nitrogen application in potato by fusion of online visible and Near Infrared (Vis-NIR) and remote sensing data,” Soil Systems, 8(2), 66. Available at: https://doi.org/10.3390/soilsystems8020066.
  • Rady, A.M. et al. (2020) “A comparison of different optical instruments and machine learning techniques to identify sprouting activity in potatoes during storage,” Journal of Food Measurement and Characterization, 14(6), pp. 3565–3579. Available at: https://doi.org/10.1007/s11694-020-00590-2.
  • Roshan, S.H., Kazemitabar, J. and Kheradmandian, G. (2022) “Artificial intelligence aided agricultural sensors for plant frostbite protection,” Applied Artificial Intelligence, 36(1). Available at: https://doi.org/10.1080/08839514.2022.2031814.
  • Sarangi, S.K. et al. (2021) “Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta,” Potato Research, 64(2), pp 277–305. Available at: https://doi.org/10.1007/s11540-020-09478-6.
  • Schillaci, C. et al. (2021) “New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems,” Science of The Total Environment, 780, 146609. Available at: https://doi.org/10.1016/j.scitotenv.2021.146609.
  • Sewell, A.M. et al. (2017) “Using educational theory and research to refine agricultural extension: affordances and barriers for farmers’ learning and practice change,” The Journal of Agricultural Education and Extension, 23(4), pp. 313–333. Available at: https://doi.org/10.1080/1389224X.2017.1314861.
  • Shanmugavel, D. et al. (2023) “Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications,” Science of The Total Environment, 904, 166729. Available at: https://doi.org/10.1016/j.scitotenv.2023.166729.
  • Sujatha, M. and Jaidhar, C.D. (2023) “Machine learning-based approaches to enhance soil fertility – A review,” Expert Systems with Applications, 240, 122557. Available at: https://doi.org/10.1016/j.eswa.2023.122557.
  • Talaviya, T. et al. (2020) “Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides,” Artificial Intelligence in Agriculture, 4, pp. 58–73. Available at: https://doi.org/10.1016/j.aiia.2020.04.002.
  • Talukder, M.S.H. et al. (2023) “PotatoPestNet: A CTInceptionV3-RS- based neural network for accurate identification of potato pests,” Smart Agricultural Technology, 5, 100297. Available at: https://doi.org/10.1016/j.atech.2023.100297.
  • Taneja, A. et al. (2023) “Artificial intelligence: Implications for the agri-food sector,” Agronomy, 13(5), 1397. Available at: https://doi.org/10.3390/agronomy13051397.
  • Tenreiro, T.R. et al. (2021) “Using NDVI for the assessment of canopy cover in agricultural crops within modelling research,” Computers and Electronics in Agriculture, 182, 106038. Available at: https://doi.org/10.1016/j.compag.2021.106038.
  • Thidar, M. et al. (2020) “Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China,” Agricultural Water Management, 241, 106340. Available at: https://doi.org/10.1016/j.agwat.2020.106340.
  • Tkatek, S. et al. (2023) “Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region,” International Journal of Electrical and Computer Engineering (IJECE), 13(5), pp. 5942–5950. Available at: https://doi.org/10.11591/ijece.v13i5.pp5942-5950.
  • Tripathi, P. et al. (2023) “Applications of machine learning in agriculture,” in M.A. Khan et al. (eds.) Smart village infrastructure and sustainable rural communities. Hershey, PA: IGI Global, pp. 99–118. Available at: https://doi.org/10.4018/978-1-6684-6418-2.ch006.
  • Veeragandham, S. and Santhi, H. (2020) “A review on the role of machine learning in agriculture,” Scalable Computing: Practice and Experience, 21(4), pp. 583–589. Available at: https://doi.org/10.12694/scpe.v21i4.1699.
  • Vianny, D. et al. (2022) “Water optimization technique for precision irrigation system using IoT and machine learning,” Sustainable Energy Technologies and Assessments, 52, 102307. Available at: https://doi.org/10.1016/j.seta.2022.102307.
  • Vreugdenhil, D. et al. (eds.) (2007) Potato biology and biotechnology: Advances and perspectives. Amsterdam: Elsevier B.V. Available at: https://doi.org/10.1016/B978-0-444-51018-1.X5040-4.
  • Wakchaure, M., Patle, B.K. and Mahindrakar, A.K. (2023) “Application of AI techniques and robotics in agriculture: A review,” Artificial Intelligence in the Life Sciences, 3(10), 100057. Available at: https://doi.org/10.1016/j.ailsci.2023.100057.
  • Wang, R.-F. and Su, W.-H. (2024) “The application of deep learning in the whole potato production chain: A comprehensive review,” Agriculture, 14(8), 1225. Available at: https://doi.org/10.3390/agriculture14081225.
  • Xue, J. and Su, B. (2017) “Significant remote sensing vegetation indices: A review of developments and applications,” Journal of Sensors, 2017, pp. 1–17. Available at: https://doi.org/10.1155/2017/1353691.
  • Zavodna, L.S., Überwimmer, M. and Frankus, E. (2024) “Barriers to the implementation of artificial intelligence in small and medium-sized enterprises: Pilot study,” Journal of Economics and Management, 46, pp. 331–352. Available at: https://doi.org/10.22367/jem.2024.46.13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9b94756-b6b3-493b-91b0-0254fe71257b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.