Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation −Δp u = αm1|u|p−2u + βm2|u|p−2u in a bounded domain Ω ⊂ RN. We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
559--574
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
autor
- Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
autor
- Mohamed 1 University, Faculty of Sciences of Oujda, Department of Mathematics, LANOL Laboratory, P.O. Box 717 Oujda, 60000, Morocco
Bibliografia
- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] A. Anane, A. Dakkak, Nonresonance conditions on the potential for a Neumann problem, Lecture Notes in Pure and Appl. Math., vol. 229, Dekker, New York, 2002, 85–102.
- [3] P.A. Binding, P.J. Browne, B.A. Watson, Eigencurves of non-definite Sturm–Liouville problems for the p-Laplacian, J. Differential Equations 255 (2013), no. 9, 2751–2777.
- [4] P.A. Binding, Y.X. Huang, Bifurcation from eigencurves of the p-Laplacian, Differential Integral Equations 8 (1995), no. 2, 415–428.
- [5] P.A. Binding, Y.X. Huang, The principal eigencurve for the p-Laplacian, Differential Integral Equations 8 (1995), no. 2, 405–414.
- [6] A. Dakkak, M. Hadda, Eigencurves of the p-Laplacian with weights and their asymptotic behavior, Electron. J. Differential Equations 2007 (2007), no. 35, 1–7.
- [7] A. Dakkak, M. Moussaoui, On the second eigencurve for the p-Laplacian operator with weight, Bol. Soc. Paran de Mat. (3) 35 (2017), no. 1, 281–289.
- [8] A. Derlet, J.-P. Gossez, P. Takáč, Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J. Math. Anal. Appl. 371 (2010), no. 1, 69–79.
- [9] T. Godoy, J.-P. Gossez, S. Paczka, On the antimaximum principle for the p-Laplacian with indefinite weight, Nonlinear Anal. 51 (2002), no. 3, 449–467.
- [10] M. Guedda, L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), no. 1, 419–431.
- [11] Y. Lou, E. Yanagida, Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math. 23 (2006), no. 3, 275–292.
- [12] A. Sanhaji, A. Dakkak, Nonresonance conditions on the potential for a nonlinear nonautonomous Neumann problem, Bol. Soc. Parana. Mat. (3) 38 (2020), no. 3, 79–96.
- [13] A. Sanhaji, A. Dakkak, On the eigencurves of one dimensional p-Laplacian with weights for an elliptic Neumann problem, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), no. 2, 353–367.
- [14] A. Szulkin, Ljusternik–Schnirelmann theory on C1-manifolds, Ann. Inst. H. Poincare Anal. Non Linéaire 5 (1988), no. 2, 119–139.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9b6c7e7-dc92-4cd2-8dc1-8fa57266192f