PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction Stir Radial Backward Extrusion (FSRBE) as a new grain refining technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method entitled Friction Stir Radial Backward Extrusion (FSRBE) is presented for processing fine-grained tubes. In FSRBE technique, an initial pure copper billet is placed inside a cylindrical chamber. The billet is pushed toward a rotating tool which results in radial and backward flow of the material while is frictionally stirred. The microstructure evolution during FSRBE was investigated through experimental observations and cellular automaton (CA) modeling. The observations reveal that the microstructure with initial grain size of 75 μm was refined to a fine-grained structure with an average grain size of 12 μm. The results of tensile tests demonstrate slight improvement in the value of yield and ultimate strength, elongation and microhardness. The microstructural evolution during FSRBE processing in the micro-level was studied using a coupled cellular automaton algorithm and finite element model. First, the macroscopic plastic flow behavior of material during FSRBE was calculated using FEM simulation method. Next, by tracing the plastic strain, the strain rate and temperature, in the deformation domain of cellular automaton, the DRX kinetics of pure copper is obtained in a devised post-processing step. The microstructure observations showed that the proposed model predictions were in reasonably good agreement with the experimentally obtained results.
Rocznik
Strony
1374--1385
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
autor
  • Department of Mechanical Engineering, University College of Nabi Akram[4TD$DIF] (UCNA), Tabriz, Iran
  • Department of Mechanical Engineering, University College of Nabi Akram[4TD$DIF] (UCNA), Tabriz, Iran
Bibliografia
  • [1] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Ann. 57 (2008) 716–735.
  • [2] R. Valiev, Nature 419 (2002) 887–889.
  • [3] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R: Rep. 50 (2005) 1–78.
  • [4] T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 456 (2007) 344–349.
  • [5] F. Abu-Farha, Scr. Mater. 66 (2012) 615–618.
  • [6] M. Sarkari Khorrami, M. Movahedi, Mater. Des. (1980–2015) 65 (2015) 74–79.
  • [7] N. Mathew, I. Dinaharan, S.J. Vijay, N. Murugan, Trans. Indian Inst. Met. 69 (2016) 1811–1818.
  • [8] M. Ahmadkhanbeigi, O. Shapourgan, G. Faraji, Trans. Indian Inst. Met. 70 (2017) 1849–1856.
  • [9] G. Buffa, D. Campanella, L. Fratini, F. Micari, Int. J. Mater. Form. 9 (2016) 613–618.
  • [10] D. Baffari, G. Buffa, D. Campanella, L. Fratini, A.P. Reynolds, J. Manuf. Process. 29 (2017) 41–49.
  • [11] W. Tang, A.P. Reynolds, J. Mater. Process. Technol. 210 (2010) 2231–2237.
  • [12] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2004.
  • [13] H. Hallberg, Int. J. Mech. Sci. 66 (2013) 260–272.
  • [14] H. Hallberg, M. Wallin, M. Ristinmaa, Comput. Mater. Sci. 49 (2010) 25–34.
  • [15] H.W. Hesselbarth, I.R. Göbel, Acta Metall. Mater. 39 (1991) 2135–2143.
  • [16] F.J. Humphreys, Scr. Metall. Mater. 27 (1992) 1557–1562.
  • [17] P. Peczak, M.J. Luton, Acta Metall. Mater. 41 (1993) 59–71.
  • [18] A.D. Rollett, M.J. Luton, D.J. Srolovitz, Acta Metall. Mater. 40 (1992) 43–55.
  • [19] T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, Y. Tomita, Mater. Trans. 49 (2008) 2559–2565.
  • [20] H.W. Lee, Y.-T. Im, Mater. Trans. 51 (2010) 1614–1620.
  • [21] N. Yazdipour, C.H.J. Davies, P.D. Hodgson, Comput. Mater. Sci. 44 (2008) 566–576.
  • [22] F. Chen, K. Qi, Z. Cui, X. Lai, Comput.Mater. Sci. 83 (2014) 331–340.
  • [23] C. Zhang, L. Zhang, Q. Xu, Y. Xia, W. Shen, Mater. Sci. Eng. A 678 (2016) 33–43.
  • [24] C.H.J. Davies, Scr. Metall. Mater. 33 (1995) 1139–1143.
  • [25] D. Raabe, Annu. Rev. Mater. Res. 32 (2002) 53–76.
  • [26] D. Raabe, L. Hantcherli, Comput. Mater. Sci. 34 (2005) 299–313.
  • [27] R.S. Saluja, R. Ganesh Narayanan, S. Das, Comput. Mater. Sci. 58 (2012) 87–100.
  • [28] L. Saucedo-Mora, T.J. Marrow, Procedia Mater. Sci. 3 (2014) 1143–1148.
  • [29] R.-l. Xin, B.-s. Wang, Z. Zhou, G.-j. Huang, Q. Liu, Trans. Nonferrous Met. Soc. China 20 (2010) s594–s598.
  • [30] R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, sixth edition, Butterworth-Heinemann, Oxford, 1999. p. x.
  • [31] U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171–273.
  • [32] Y. Estrin, J. Mater. Process. Technol. 80–81 (1998) 33–39.
  • [33] A. Laasraoui, J.J. Jonas, Metall. Trans. A 22 (1991) 1545–1558.
  • [34] F. Lefevre-Schlick, Y. Brechet, H.S. Zurob, G. Purdy, D. Embury, Mater. Sci. Eng. A 502 (2009) 70–78.
  • [35] R. Ding, Z.X. Guo, Acta Mater. 49 (2001) 3163–3175.
  • [36] W. Roberts, B. Ahlblom, Acta Metall. 26 (1978) 801–813.
  • [37] A. Babaei, H. Jafarzadeh, F. Esmaeili, Trans. Indian Inst. Met. 71 (3) (2017) 639–648.
  • [38] A. Babaei, M.M. Mashhadi, H. Jafarzadeh, J. Mater. Sci. 49 (8) (2014) 3158–3165.
  • [39] H. Jafarzadeh, K. Abrinia, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 232 (4) (2015) 307–318.
  • [40] H. Jafarzadeh, A. Babaei, Trans. Indian Inst. Met. (2016) 1–10.
  • [41] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Mater. Res. Lett. 4 (2016) 1–21.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9b46deb-c0de-4363-90ed-95fffc6332e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.