Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In southwest China, the Panzhihua area annually produces about 80 million tons of tailings with a TiO2 grade of around 5.0%, which causes serious waste of titanium resources as well as environmental and safety issues. The ilmenite contained in these tailings is ultra-fine in size, so it is difficult to recover under the regular operating conditions of pulsating high gradient magnetic separation (PHGMS). In this study, an SLon-100 PHGMS separator was applied to concentrate an ultra-fine titanium tailing under a wide range of operating conditions. The experimental results indicated that a combination of high pulsating frequency, large pulsating stroke, and low feed velocity was favorable for the highly efficient recovery of ultra-fine ilmenite from the tailings. The TiO2 grade in the optimal concentrate was enhanced from 4.33% to 13.64%, at a recovery of 66.55% and an enrichment ratio of 3.15 through a one-stage PHGMS process. The size analysis of the optimal concentrate showed that the TiO2 recovery in -25+18 μm and -18+10 μm fractions exceeded 70%. To further understand this PHGMS performance, the optimal ultra-fine ilmenite and larger-size ilmenite concentration conditions were compared. This study provides a valuable reference in the PHGMS operation for recovering ultra-fine weakly magnetic minerals, including ilmenite.
Rocznik
Tom
Strony
art. no. 189617
Opis fizyczny
Bibiogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Engineering, Assiut University, Assiut 71515, Egypt
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
- SLon Magnetic Separator Co., Ltd, Ganzhou 341000, Jiangxi, China
autor
- SLon Magnetic Separator Co., Ltd, Ganzhou 341000, Jiangxi, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
Bibliografia
- CHEN, L., LIU, W., ZENG, J., REN, P., 2017. Quantitative investigation on magnetic capture of single wires in pulsating HGMS. Powder Technology, 313, 54–59.
- CHEN, L., XIONG, D., HUANG, H., 2009. Pulsating high-gradient magnetic separation of fine hematite from tailings. Minerals & Metallurgical Processing, 26, 163–168.
- DAI, P., YANG, J., WEI, Z., ZENG, J., XUE, Z., CHEN, L., 2022. Magnetic properties of chalcopyrite and arsenopyrite for high-gradient magnetic separation with Crystal-Field Theory. Minerals Engineering, 189, 107893.
- FAN, G., ZHANG, C., WANG, T., DENG, J., CAO, Y., CHANG, L., ZHOU, G., WU, Y., LI, P., 2020. New insight into surface adsorption thermodynamic, kinetic properties and adsorption mechanisms of sodium oleate on ilmenite and titanaugite. Advanced Powder Technology, 31, 3628–3639.
- HU, Z., LU, D., ZHENG, X., WANG, Y., XUE, Z., XU, S., 2023. Development of a high-gradient magnetic separator for enhancing selective separation: A review. Powder Technology, 118435.
- HUANG, H., CHEN, L., XIONG, T., LAI, Q., 2023. Experimental study on new high gradient magnetic separation process for recovery of ultra-fine ilmenite from titanium tailings in Panxi region. Metal Mine, 568.
- LIU, L., TAN, Q., YUE, T., GUO, Z., LV, L., 2014. Pre-concentration of ultrafine crushed hematite ores. Separation of Science and Technology, 49, 1442–1448.
- PADMANABHAN, N.P.H., SREENIVAS, T., 2011. Process parametric study for the recovery of very-fine size uranium values on super-conducting high gradient magnetic separator. Advanced Powder Technology, 22, 131–137.
- PUSHP, P., DASHARATH, S.M., ARATI, C., 2022. Classification and applications of titanium and its alloys. Today: Proceedings. 54, 537–542.
- WU, L., CHEN, L., WU, N., XIONG, T., ZHANG, B., ZENG, J., LIU, X., 2023. Experimental comparison between vibrating-pulsating and pulsating high gradient magnetic separators for separating olivine-type low grade ilmenite ore from Panxi area. The Chinese Journal of Nonferrous Metals, 1–16.
- XIONG, D., LIU, S., CHEN, J., 1998. New technology of pulsating high gradient magnetic separation. International Journal of Minerals, 54, 111–127.
- XUE, Z., WANG, Y., ZHENG, X., LU, D., LI, X., 2020. Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation. Separation and Purification Technology, 237, 116375.
- YAVUZ, C.T., MAYO, J.T., YU, W.W., PRAKASH, A., FALKNER, J.C., YEAN, S., CONG, L., SHIPLEY, H.J., KAN, A., TOMSON, M., NATELSON, D., COLVIN, V.L., 2006. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 314, 964–967.
- ZENG, J., CHEN, L., YANG, R., TONG, X., REN, P., ZHENG, Y., 2017. Centrifugal high gradient magnetic separation of fine ilmenite. International Journal of Minerals, 168, 48–54.
- ZENG, J., TONG, X., REN, P., CHEN, L., 2019a. Theoretical description on size matching for magnetic element to independent particle in high gradient magnetic separation. Minerals Engineering, 135, 74–82.
- ZENG, J., TONG, X., YI, F., CHEN, L., 2019b. Selective capture of magnetic wires to particles in high gradient magnetic separation. Minerals, 9, 509.
- ZHAI, J., CHEN, P., SUN, W., CHEN, W., WAN, S., 2020. A review of mineral processing of ilmenite by flotation. Minerals Engineering, 157, 106558.
- ZHENG, X., WANG, Y., LU, D., 2015. Study on capture radius and efficiency of fine weakly magnetic minerals in high gradient magnetic field. Minerals Engineering, 74, 79–85.
- ZHENG, X., XUE, Z., WANG, Y., ZHU, G., LU, D., LI, X., 2019. Modeling of particle capture in high gradient magnetic separation: A review. Powder Technology, 352, 159–169.
- ZHU, Y.G., ZHANG, G.F., FENG, Q.M., YAN, D.C., WANG, W.Q., 2011. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite. Transactions of Nonferrous Metals Society of China, 21, 1149–1154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9b10d38-625c-43bf-b37b-6125573f00ee