PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.
Słowa kluczowe
Czasopismo
Rocznik
Strony
270--292
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
  • Space Research Center, Polish Academy of Sciences, Warsaw, Poland
autor
  • Space Research Center, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Bizouard, C., and D. Gambis (2009), The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: H. Drewes (ed.), Geodetic Reference Frames, IAG Symposium, Munich, Germany, October 9-14, 2006, Springer, Berlin Heidelberg, 265- 270, DOI: 10.1007/978-3-642-00860-3_41.
  • Brzeziński, A. (1992), Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem, Manuscr. Geod. 17, 1, 3-20.
  • Brzeziński, A., J. Nastula, B. Kołaczek, and R.M. Ponte (2005), Oceanic excitation of polar motion from intraseasonal to decadal periods. In: F. Sansõ (ed.), A Window of the Future of Geodesy, IAG Symposium, Sapporo, Japan, June 30 – July 11, 2003, Springer, Berlin Heidelberg, 591-596, DOI: 10.1007/3-540-27432-4_100.
  • Brzeziński, A., J. Nastula, and B. Kołaczek (2009), Seasonal excitation of polar motion estimated from recent geophysical models and observations, J. Geodyn. 48, 3-5, 235-240, DOI: 10.1016/j.jog.2009.09.021.
  • Chambers, D.P., and J.A. Bonin (2012), Evaluation of Release-05 GRACE timevariable gravity coefficients over the ocean, Ocean Sci. 8, 5, 859-868, DOI: 10.5194/os-8-859-2012.
  • Chao, B.F., and R.S. Gross (1987), Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes, Geophys. J. Int. 91, 3, 569-596, DOI: 10.1111/j.1365-246X.1987.tb01659.x.
  • Chao, B.F., and W.P. O’Connor (1988), Global surface-water-induced seasonal variations in the Earth’s rotation and gravitational field, Geophys. J. Int. 94, 2, 263-270, DOI: 10.1111/j.1365-246X.1988.tb05900.x.
  • Chen, J.L., and C.R. Wilson (2005), Hydrological excitations of polar motion 1993- 2002, Geophys. J. Int. 160, 3, 833-839, DOI: 10.1111/j.1365-246X.2005. 02522.x.
  • Chen, J.L., C.R. Wilson, B.F. Chao, C.K. Shum, and B.D. Tapley (2000), Hydrological and oceanic excitations to polar motion and length-of-day variation, Geophys. J. Int. 141, 1, 149-156, DOI: 10.1046/j.1365-246X.2000.00069.x.
  • Dill, R., M. Thomas, and C. Walter (2009), Hydrological induced Earth rotation variations from stand-alone and dynamically coupled simulations. In: M. Soffel and N. Capitaine (eds.), Proc. Journées 2008 “Systèmes de Référence Spatio-temporels” and X. Lohrmann-Kolloquium, 22-24 September 2008, Dresden, Germany, 115-118.
  • Dobslaw, H., R. Dill, A. Grötzsch, A. Brzeziński, and M. Thomas (2010), Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere, J. Geophys. Res. 115, B10, B10406, DOI: 10.1029/2009JB007127.
  • Eubanks, T.M. (1993), Variations in the orientation of the Earth. In: D.E. Smith and D.L. Turcotte (eds.), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, American Geophysical Union, Washington, 1-54, DOI: 10.1029/GD024p0001.
  • Fan, Y., and H. van den Dool (2004), Climate Prediction Center global monthly soil moisture data set at 0.5 degrees resolution for 1948 to present, J. Geophys. Res. 109, D10, D10102, DOI: 10.1029/2003JD004345.
  • Gross, R.S. (2005), The observed period and Q of the Chandler wobble. In: H.-P. Plag, B.F. Chao, R.S. Gross, and T. van Dam (eds.), Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Variations. Proceedings of the Workshop Held April 21-23, 2004 at the Hotel Parc Belle-Vue, Luxembourg, Centre Européen de Géodynamique et de Séismologie, Luxembourg, 31-37.
  • Gross, R.S., I. Fukumori, and D. Menemenlis (2003), Atmospheric and oceanic excitation of the Earth’s wobbles during 1980-2000, J. Geophys. Res. 108, B8, 2370, DOI: 10.1029/2002JB002143.
  • Hinnov, L.A., and C.R. Wilson (1987), An estimate of the water storage contribution to the excitation of polar motion, Geophys. J. Int. 88, 2, 437-459, DOI: 10.1111/j.1365-246X.1987.tb06652.x.
  • Höpfner, J. (2001), Atmospheric, oceanic and hydrological contributions to seasonal variations in length of day, J. Geodesy 75, 2-3, 137-150, DOI: 10.1007/ s001900100164.
  • Jin, S.G., D.P. Chambers, and B.D. Tapley (2010), Hydrological and oceanic effects on polar motion from GRACE and models, J. Geophys. Res. 115, B2, B02403, DOI: 10.1029/2009JB006635.
  • Jin, S.G., L.J. Zhang, and B.D. Tapley (2011), The understanding of length-of-day variations from satellite gravity and laser ranging measurements, Geophys. J. Int. 184, 2, 651-660, DOI: 10.1111/j.1365-246X.2010.04869.x.
  • Jin, S.G., A.A. Hassan, and G.P. Feng (2012), Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models, J. Geodyn. 62, 40-48, DOI: 10.1016/j.jog.2012.01.009.
  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc. 77, 3, 437-471, DOI: 10.1175/ 1520-0477(1996)0772.0.CO;2.
  • Kołaczek, B., J. Nastula, and M. Paśnicka (2011), Analyses of the geophysical excitations of polar motion in the period: 2001.0-2009.0. In: H. Schuh, S. Boehm, T. Nilsson, and N. Capitaine (eds.), Proc. Journees 2011 “Systemes de Reference Spatio-temporels”, Vienna University of Technology, 19-21 September 2011, Vienna, Austria.
  • Kuehne, J., and C.R. Wilson (1988), Chandler wobble excitation by terrestrial water storage, Eos Trans. AGU 69, 16, 328, DOI: 10.1029/EO069i016p00299.
  • Kuehne, J., and C.R. Wilson (1991), Terrestrial water storage and polar motion, J. Geophys. Res. 96, B3, 4337-4345, DOI: 10.1029/90JB02573.
  • Lettenmaier, D.P., and J.S. Famiglietti (2006), Hydrology: Water from on high, Nature 444, 7119, 562-563, DOI: 10.1038/444562a.
  • Nastula, J. (1997), The regional atmospheric contributions to the polar motion and EAAM excitation functions. In: J. Segawa, H. Fujimoto, and S. Okubo (eds.), Gravity, Geoid and Marine Geodesy, International Symposium, Tokyo, Japan, September 30 – October 5, 1996, 281-288, DOI: 10.1007/978- 3-662-03482-8_39.
  • Nastula, J., and R.M. Ponte (1999), Further evidence of oceanic excitation of polar motion, Geophys. J. Int. 139, 1, 123-130, DOI: 10.1046/j.1365-246X.1999. 00930.x.
  • Nastula, J., and D.A. Salstein (2012), Regional geophysical excitation functions of polar motion over land areas. In: S. Kenyon, M.C. Pacino, and U. Marti (eds.), Geodesy for Planet Earth, Proc. of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August – 4 September 2009, Part 3, 491-497, DOI: 10.1007/978-3-642-20338-1_59.
  • Nastula, J., R.M. Ponte, and D.A. Salstein (2000), Regional signals in atmospheric and oceanic excitation of polar motion. In: S. Dick, D. McCarthy, and B. Luzum (eds.), Polar Motion: Historical and Scientific Problems, ASP Conference Series, Vol. 208, Astronomical Society of the Pacific, San Francisco, 463-472.
  • Nastula, J., B. Kołaczek, and D.A. Salstein (2008a), Regional differences of hydrological excitation of polar motion computed from hydrological models and from the GRACE gravity field data, Geophys. Res. Abstr. 10, EGU2008-A- 08451.
  • Nastula, J., B. Kołaczek, and D. Salstein (2008b), Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data. In: M. Soffel and N. Capitaine (eds.), Proc. Journées 2008 “Systèmes de Référence Spatio-temporels” and X. Lohrmann-Kolloquium, 22-24 September 2008, Dresden, Germany.
  • Nastula, J., D. Salstein, and B. Kołaczek (2009), Patterns of atmospheric excitation functions of polar motion from high-resolution regional sectors, J. Geophys. Res. 114, B4, B04407, DOI: 10.1029/2008JB005605.
  • Nastula, J., M. Paśnicka, and B. Kołaczek (2011), Comparison of the geophysical excitations of polar motion from the period: 1980.0-2009.0, Acta Geophys. 59, 3, 561-577, DOI: 10.2478/s11600-011-0008-2.
  • Ponte, R.M., D. Stammer, and J. Marshall (1998), Oceanic signals in observed motions of the Earth’s pole of rotation, Nature 391, 6666, 476-479, DOI: 10.1038/35126.
  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The global land data assimilation system, Bull. Amer. Meteorol. Soc. 85, 381-394, DOI: 10.1175/ BAMS-85-3-381.
  • Salstein, D.A., and R.D. Rosen (1989), Regional contributions to the atmospheric excitation of rapid polar motions, J. Geophys. Res. 94, D7, 9971-9978, DOI: 10.1029/JD094iD07p09971.
  • Salstein, D.A., R.D. Rosen, D.M. Kann, and A.J. Miller (1993), The sub-bureau for atmospheric angular momentum of the International Earth Rotation Service: A meteorological data center with geodetic applications, Bull. Am. Meteorol. Soc. 74, 1. 67-80, DOI: 10.1175/1520-0477(1993)074 2.0.CO;2.
  • Seaone, L., J. Nastula, C. Bizouard, and D. Gambis (2009), The use of gravimetric data from GRACE mission in the understanding of polar motion variations, Geophys. J. Int. 178, 2, 614-622, DOI: 10.1111/j.1365-246X.2009.04181.x.
  • van Hylckama, T.E.A. (1970), Water balance and Earth unbalance. In: Proc. Reading Symp. World Water Balance, International Associations of Scientific Hydrology, Vol. 92, AIHS-UNESCO Publication, 434-444.
  • Wahr, J., and M. Molenaar (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103, B12, 30205-30229, DOI: 10.1029/98JB02844.
  • Walter, C. (2008), Simulationen hydrologischer Massenvariationen und deren Einfluss auf die Erdrotation, Ph.D. Thesis, Technischen Universität, Dresden, Germany, 195 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9affd46-429c-4258-9b9b-a16f9c0daddd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.