Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the use of new modern methods for the research of movement of material on a belt conveyor. One of the innovative methods is Particle Image Velocimetry (PIV), which was used to scan and assess the two-dimensional vector field of speed of particles on the belt conveyor. Outputs from PIV were compared to simulations of the same transport process. These simulations were performed using the Discrete Element Method (DEM). Four transport speeds of material were assessed for a real and simulative belt conveyor model. Software tracking of particle movement was used to determine and compare the trajectories of paths of particles leaving the belt conveyor drum. Validation of the DEM simulation of material movement over a belt conveyor drum using PIV provided acceptable results in the area of particle speed fields. Comparison of the particle path trajectory corresponds to the preliminary hypothesis which leads to calibration of the DEM simulation. The results and assessment of this paper were created based on validation.
Wydawca
Rocznik
Tom
Strony
118--124
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
Bibliografia
- 1. Fedorko G., Molnar V., Grincova A., Dovica M., Toth T., Husakova N., Taraba V. and Kelemen M. Failure analysis of irreversible changes in the construction of rubber–textile conveyor belt damaged by sharp-edge material impact. Engineering Failure Analysis, 39, 2014, 135–148.
- 2. Molnar V., Fedorko G., Stehlikova B., Michalik P. and Weiszer M. A regression model for prediction of pipe conveyor belt contact forces on idler rolls. Measurement, 46(10), 2013, 3910–3917.
- 3. Molnar V., Fedorko G., Stehlikova B., Michalik P. and Kopas M. Mathematical models for indirect measurement of contact forces in hexagonal idler housing of pipe conveyor. Measurement, 47, 2014, 794–803.
- 4. Michalik P. and Zajac J. Using of computer integrated system for static tests of pipe conveyer belts. Proc. of 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia 2012, 480–485.
- 5. Bigos P., Kulka J., Kubin K. and Mantic M. Professional verification of crane track beams in heavy metallurgical operation by means of tensometry, Reliability and Risk Analysis, 2009, 30-37.
- 6. Gajdos I., Slota J., Spisak E., Jachowicz T. and Tor- Swiatek A. Structure and tensile properties evaluation of samples produced by Fused Deposition Modeling, Open Engineering, 6, 2016, 86–89.
- 7. Debski H., Koszalka G. and Ferdynus M. Application of FEM in the analysis of the structure of a trailer supporting frame with variable operation parameters, Eksploatacja I Niezawodnosc - Maintenance and Reliability, 14, 2012, 107–113.
- 8. Wensrich Ch.M. Evolutionary optimisation in chute design. Powder technology, 138(2), 2003, 118-123.
- 9. Grima A.P. and Wypych P.W. Investigation into calibration of discrete element model parameters for scale-up and validation of particle–structure interactions under impact conditions. Powder Technology, 212(1), 2011, 198-209.
- 10. Molnar V., Fedorko G., Husakova N., Král’ J.J. and Ferdynus M. Energy calculation model of an outgoing conveyor with application of a transfer chute with the damping plate. Mechanical Sciences, 7(2), 2016, 167.
- 11. Hastie D.B. and Wypych P.W. Experimental validation of particle flow through conveyor transfer hoods via continuum and discrete element methods. Mechanics of Materials, 42(4), 2010, 383-394.
- 12. Xie L., Zhong W., Zhang H., Yu A., Qian Y. and Situ Y. Wear process during granular flow transportation in conveyor transfer. Powder Technology, 288, 2016, 65-75.
- 13. Hastie D.B. and Wypych P.W. Evaluation of belt conveyor trajectories. In: 6th International Conference for Conveying and Handling of Particulate Solids: 3-7 August 2009, Brisbane Convention & Exhibition Centre, Queensland, Australia. Engineers Australia, 2009, 299-305.
- 14. Gröger T. and Katterfeld A. Application of the Discrete Element Method in Materials Handling–Part 3: Transfer Stations. Bulk Solids Handling, 27(3), 2007, 158-166.
- 15. Cleary P.W. Large scale industrial DEM modelling. Engineering Computations, 21(2/3/4), 2004, 169-204.
- 16. Guo Y.C., Wang S., Hu K. and Li D. Optimization and experimental study of transport section lateral pressure of pipe belt conveyor. Advanced Powder Technology, 27(4), 2016, 1318-1324.
- 17. 17. Grima A.P., Fraser T, Hastie D.B and Wypych P.W. Discrete element modelling: trouble-shooting and optimisation tool for chute design, 2011, 1-26.
- 18. 18. Coetzee C. J. and Els D. N. J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Computers and Electronics in Agriculture, 65(2), 2009, 198-212.
- 19. 19. Coetzee C. J. Review: Calibration of the Discrete Element Method. Powder Technology, 310, 2017, 104-142.
- 20. 20. Grima A. and Wypych P. Discrete element simulation of a conveyor impact-plate transfer: calibration, validation and scale-up. Australian Bulk Handling Review, 3, 2010, 64-72.
- 21. 21. Ziegenhein T. and Lucas D. On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows. Flow Measurement and Instrumentation, 48, 2016, 36-41.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9ae52e5-077a-4924-b400-3732fdcb1b71