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Abstract: This paper deals with a robust multiobjective opti-
mization problem involving nonsmooth/nonconvex real-valued func-
tions. Under an appropriate constraint qualification, we establish
necessary optimality conditions for weakly robust efficient solutions
of the considered problem. These optimality conditions are pre-
sented in terms of Karush-Kuhn-Tucker multipliers and convexifica-
tors of the related functions. Examples illustrating our findings are
also given.
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1. Introduction

In theoretical multiobjective optimization, the spotlight is placed on finding
the global efficient solutions, representing the best possible objective values.
Fortunately, from a practical point of view, one may not always be interested in
finding the so-called global best solutions, in particular when these solutions are
quite sensitive to the variable perturbations, which is generally often the case.
In such situation, one would be attracted by finding robust solutions, which are
not very sensitive to small perturbations in variables.

In order to find the sets of optimal policies that maintain feasibility (in the
optimization sense) under a variety of operating conditions, researchers used
to focus on the worst-case assumptions regarding uncertainty (see Ben-Tal and
Nemirovski, 2000, or Bertsimas and Sim, 2004), named the pessimistic view-
point, where the decision maker is powerless regarding the uncertainty, with no
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resources available to combat or mitigate unfavorable realizations of uncertain
parameters. During the last decades, the optimistic viewpoint using best-case
uncertainty has proven also to be a suitable approach for reducing the conser-
vatism of the pessimistic viewpoint in intuitive ways that encode economically
realistic modeling assumptions, such as the availability of resources that can be
used to combat or mitigate uncertainty.

Robust optimization is an important technique for investigating optimiza-
tion problems with uncertainties. It was introduced as a method to integrate
uncertainties in mathematical programming models; the basic idea behind is to
protect the solutions against worst-case realizations of the uncertain parameters.
Recently, extensive work on theoretical and applied aspects in the area of robust
optimization has been carried out (see Bertsimas and Sim, 2006; Bokrantz and
Fredricksson, 2017; Chen, Köbis and Yao, 2019; Chuong, 2016; Craven and Is-
lam, 2017; Jeyakumar, Li and Lee, 2012; Kuroiwa and Lee, 2012; Lee and Son,
2014; Saadati and Oveisha, 2021). For example, Chuong (2016) gave necessary
and sufficient optimality conditions for robust (weakly) Pareto solutions of a
robust nonsmooth multiobjective optimization problem in terms of multipliers
and limiting subdifferentials of the related functions. Bokrantz and Fredriksson
(2017) presented necessary and sufficient conditions for robust efficiency regard-
ing multiobjective optimization problems that depend on uncertain parameters
by using a scalarization method. Using a generalized alternative theorem, as-
suming concavity of the constraint-functions, Chen, Köbis and Yao (2019) es-
tablished necessary optimality conditions for weakly robust efficient solutions
and properly robust efficient solutions.

In this paper, we consider an uncertain multiobjective optimization problem
of the form:

(UCP ) : min f (x) = (f1 (x) , ..., fk (x)) subject to gi(x, vi) ≤ 0, ∀i ∈ I,

where fs : Rn → R, s ∈ S := {1, ..., k} , and gi : R
n × R

ni → R, i ∈ I :=
{1, ..., m} , are given continuous functions, x ∈ R

n is the vector of decision
variables, vi ∈ Vi, i ∈ I := {1, 2, . . . ,m} , are uncertain parameters, Vi, i ∈ I,
is a nonempty, convex and compact subset of Rni and k, n, m, ni ∈ N. Here
we suppose that we do not know the exact values of vi, i ∈ I, but know that
vi, i ∈ I, belongs to some uncertainty sets Vi, i ∈ I.

The robust counterpart of (UCP ) is given by

(RCP ) : min f (x) subject to x ∈ F

where

F := {x ∈ R
n : gi(x, vi) ≤ 0, ∀vi ∈ Vi, ∀i ∈ I}

is the set of all robust feasible solutions of (RCP ) . A vector x is called a robust
feasible solution of (UCP ) if it is a feasible solution of (RCP ) . A vector x ∈ F
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is called a weakly robust efficient solution of (UCP ) (see Chen, Köbis and Yao,
2019) if and only if

f (x)− f (x) /∈ −intRk+, ∀x ∈ F.

This paper is devoted to investigation of the necessary optimality conditions
for weakly robust efficient solutions of problem (UCP ), formulated with non-
differentiable/nonconvex functions. Without having recourse to the concavity
of gi(x, .) at the reference point x, our approach consists of using a scalarization
technique together with a directional constraint qualification (see Kabagani and
Soleimani-damaneh, 2017), corresponding to the robust feasible solutions set F.
These optimality conditions are presented in terms of Karush-Kuhn-Tucker mul-
tipliers and convexificators of the related functions. It should be emphasized
that convexificators (Jeyakumar and Luc, 1999) are closed sets that are not nec-
essarily bounded or convex; they were recently introduced to unify the existing
results and to refine others in non-smooth analysis and optimization (see Baba-
hadda and Gadhi, 2006; Demianov and Jeyakumar, 1997; Dutta and Chandra,
2002, 2004; Jeyakumar and Luc, 1999; Li and Zhang, 2006). To the best of
our knowledge, there is no work that has been published dealing with optimal-
ity conditions using convexificators in the above-defined optimization problems
involving nonsmooth/nonconvex functions. It is worth pointing out that for a
locally Lipschitz function, the most known subdifferentials such as the subdif-
ferential of Clarke are convexificators (see Jeyakumar and Luc, 1999, and the
references therein).

The rest of the paper is organized as follows. Section 2 contains some basic
definitions and some auxiliary results. In Section 3, we establish necessary
optimality conditions for weakly robust efficient solutions of problem (UCP ) .

2. Preliminaries

Throughout this paper, R
n is the usual n-dimensional Euclidean space. We

denote by 〈., .〉 and R
n
+ the inner product and the non-negative orthant of Rn,

defined by

R
n
+ = {(x1, · · · , xn) ∈ R

n : xi ≥ 0} .

For a subset Ω of Rn, the sets int Ω, cl Ω and conv Ω stand for the interior of
Ω, the closure of Ω and the convex hull of Ω, respectively. The negative polar
cone of Ω is defined by

Ω◦ := {v ∈ R
n : 〈v, x〉 ≤ 0, ∀x ∈ Ω} .

A function f : R
n −→ R ∪ {+∞} is said to be locally Lipschitzian around

x ∈ domf := {z ∈ R
n | f (z) ∈ R} if there exist a neighbourhood U ⊆ domf of

x and k ≥ 0 such that

|f(z)− f(y)| ≤ k‖z − y‖ ∀z, y ∈ U,
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where ‖.‖ denotes the Euclidean norm in R
n. The expressions

f−d (x, v) = lim inf
tց0

[f (x+ tv)− f (x)] /t

and

f+d (x, v) = lim sup
tց0

[f (x+ tv)− f (x)] /t

signify, respectively, the lower and upper Dini directional derivatives of f at x
in the direction v. In the case of f−d (x, v) = f+d (x, v) , their common value is
denoted by f ′ (x, v) , which is called Dini derivative of f at x in the direction v.
The function f is called Dini differentiable at x iff its Dini derivative at x exists
in all directions.

Definition 1 (Jeyakumar and Luc, 1999; Dutta and Chandra, 2002) Let f :
R
n → R ∪ {+∞} be a given function and take x ∈ R

n at which f is finite.

• f is said to have an upper convexificator (UCF) ∂∗f (x) at x if ∂∗f (x) ⊂
R
n is closed and for each v ∈ R

n,

f−d (x, v) ≤ sup
x∗∈∂∗f(x)

〈x∗, v〉 ;

• f is said to have a lower convexificator (LCF) ∂∗f (x) at x if ∂∗f (x) ⊂
R
n is closed and for each v ∈ R

n,

f+d (x, v) ≥ inf
x∗∈∂∗f(x)

〈x∗, v〉 .

A closed set ∂∗f (x) ⊂ R
n is said to be a convexificator of f at x if it is

an upper and lower convexificator of f at x.
• f is said to have an upper semi-regular convexificator (USRCF) ∂∗f (x)

at x if ∂∗f (x) is a closed set and for each v ∈ R
n,

f+d (x, v) ≤ sup
x∗∈∂∗f(x)

〈x∗, v〉 .

Remark 1 For locally Lipschitz functions, one may find upper semi-regular
convexificators, which are smaller than the Clarke subdifferential (Clarke, 1983)
and the Mordukhovich subdifferential (Mordukhovich and Shao, 1995), as Exam-
ple 1 shows. In addition, an upper semi-regular convexificator may just contain
only a finite number of elements.

Example 1 Take f : R2 → R such that

f (x, y) = 3 |x| − 2 |y| , ∀ (x, y) ∈ R
2.

• The function f admits

∂∗f(0, 0) := {(3,−2) , (−3, 2)}
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as an upper semi-regular convexificator at (0, 0) ; whereas the Mordukho-
vich subdifferential of f at (0, 0) and the Clarke subdifferential of f at
(0, 0) are, respectively, the sets

∂mf(0, 0) =
{

(t, 2) ∈ R
2 : −3 ≤ t ≤ 3

}

∪
{

(t,−2) ∈ R
2 : −3 ≤ t ≤ 3

}

and

∂cf (0, 0) = conv {(3,−2) , (−3, 2) , (3, 2) , (−3,−2)} .

• Observe that the upper semi-regular convexificator ∂∗f(0, 0) is strictly in-
cluded in the Mordukhovich subdifferential ∂mf(0, 0). More than that,
the convex hull of ∂∗f(0, 0) is a proper subset of both ∂cf(0, 0) and
conv ∂mf(0, 0).

Remark 2 Example 1 shows that the necessary optimality conditions that are
expressed in terms of USRCFs may provide sharp conditions even for locally
Lipschitz functions.

In the following result, we give an upper semi-regular convexificator for a
max function.

Proposition 1 Let fs : R
n → R, s ∈ S, be continuous given functions. Let

h (x) := max (f1 (x) , ..., fk (x)) and S (x) := {s ∈ S such that h (x) = fs (x)} .

Suppose that for each s ∈ S (x) , the function fs admits an upper semi-regular
convexificator ∂∗fs (x) at x. Then, Λ (x) :=

⋃

s∈S(x)

∂∗fs (x) is an upper semi-

regular convexificator of h at x.

Proof Let v ∈ R
n and let (tn)n∈N

be a positive sequence such that lim
n7→+∞

tn = 0.

Since fs : R
n → R, s ∈ S, are continuous function, for n large enough, we have

S (x+ tnv) ⊆ S (x) .

Notice that h is continuous at x (Apostol, 2004, Theorem 4.20) and that

h+ (x, v) = lim
n→+∞

h (x+ tnv)− h (x)

tn
.

Since S (x) is finite, we can find an index s ∈ S and a subsequence (tsn)n
such that

h (x+ tsnv) = fi (x+ tsnv) .
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Since

h+d (x, v) = lim
n→+∞

fs (x+ tsnv)− fs (x)

tsn

≤ (fs)
+
d (x, v) ≤ sup

x∗∈∂∗fs(x)

〈x∗, v〉 ≤ sup
x∗∈Λ(x)

〈x∗, v〉 , ∀v ∈ R
n

one deduces that Λ (x) is an upper semi-regular convexificator of h at x.

The contingent and normal cones to Ω at x ∈ cl Ω are given by

TΩ (x) := {v ∈ R
n : ∃tn ↓ 0 and ∃vn → v such that x+ tnvn ∈ Ω, ∀n ∈ N}

and

NΩ (x) := {ξ ∈ R
n : 〈ξ, v〉 ≤ 0, ∀v ∈ TΩ (x)} = TΩ (x)

◦
.

The cone of feasible directions to Ω at x is defined by

DΩ (x) := {d ∈ R
n : ∃δ > 0 s.t ∀λ ∈ (0, δ) x+ λd ∈ Ω} .

The cone DΩ (x) is neither closed nor convex necessarily, while TΩ (x) is closed
but not necessarily convex (see Li and Zhang, 2006). In general, DΩ (x) ⊆
TΩ (x) ; however, if Ω is convex, we have cl DΩ (x) = TΩ (x) (Tung, 2020, Remark
1). The cone and the convex cone generated by Ω ⊆ R

n are, respectively, defined
by

cone(Ω) := {λy : λ ≥ 0, y ∈ Ω}

and

pos Ω :=

{

y ∈ R
n : ∃l ∈ N s.t. y =

l
∑

i=1

λiyi, λi ≥ 0, yi ∈ Ω, i = 1, 2, . . . , l

}

.

Now, we recall the notion of locally star-shaped set, introduced by Ewing
(1977).

Definition 2 (Ewing, 1977) A nonempty set Ω ⊆ R
n is said to be locally

star-shaped at x ∈ Ω, if corresponding to x and each x ∈ Ω, there exists some
scalar a (x, x) ∈ (0, 1] such that

x+ λ (x− x) ∈ Ω, for all λ ∈ (0, a (x, x)) .

If a (x, x) = 1 for each x ∈ Ω, then Ω is said to be star-shaped at x (Ewing,
1977).

As examples of locally star-shaped sets, convex sets are locally star-shaped at
each of their elements, and cones are locally star-shaped at the origin (Kabgani
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and Soleimani-damaneh, 2019). If Ω is closed and is locally star-shaped at each
x ∈ Ω, then Ω is convex (Kaur, 1983). Notice that there exist locally star-shaped
sets (at some x) that are not star-shaped (at x). For example,

Ω =
{

(x, y) ∈ R
2 : |x| < y

}

∪
{

(x, y) ∈ R
2 : |x| > y

}

∪ {(0, 0)}

is locally star-shaped at x = (0, 0) and is not star-shaped at x.

Let L (x) be the set of all locally star-shaped sets Ω ⊆ R
n at x. According

to Kabgani and Soleimani-damaneh (2021, Theorem 3.1), for any Ω ∈ L (x) , we
have

TΩ (x) = cl (cone (Ω− x)) = cl (DΩ (x)) (1)

and

NΩ (x) = (pos (Ω− x))
◦
= {d : 〈d, x− x〉 ≤ 0, ∀x ∈ Ω} .

We shall need the following lemmas.

Lemma 1 (Gadhi, 2021) Let B ⊆ R
n be a nonempty, convex and compact set

and A ⊆ R
n be a convex cone. If

sup
v∈B

〈v, d〉 ≥ 0, for all d ∈ A◦

then

0 ∈ B + cl A.

Lemma 2 (Li and Zhang, 2006) Let Ω1 and Ω2 be two nonempty subsets of R
n.

Then,

conv (Ω1 +Ω2) = conv Ω1 + conv Ω2.

3. Robust optimality conditions of (UCP)

For i ∈ I, we define a family of real-valued functions ϕi : R
n → R as follows:

ϕi (x) := sup
vi∈Vi

gi (x, vi) . (2)

Using (2) , the set of robust feasible solutions F can be equivalently described
as follows:

F = {x ∈ R
n : ϕi (x) ≤ 0, i ∈ I} .

The following assumption is needed in the sequel.
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Assumption 1

• For each vi ∈ Vi (x) , the function x 7→ gi (x, vi) admits ∂∗xgi (x, vi) as a
bounded UCF at x.

• The function ϕi, i ∈ I (x) , admits a bounded UCF ∂∗ϕi (x) , i ∈ I (x) , at
x ∈ F such that

∂∗ϕi (x) ⊆ conv







⋃

vi∈Vi(x)

∂∗xgi (x, vi)







(3)

where

Vi (x) := {vi ∈ Vi such that gi (x, vi) = ϕi (x)} .

Inclusion (3) has been frequently used in the literature (see, for instance, Kaba-
gani and Soleimani-damaneh, 2017; Li, Ng and Pong, 2008; Kanzi, 2011; Li,
Nahak and Singer, 2000; or Gadhi and Ichatouhane, 2021) and it is worth
pointing out that sometimes it is called Pshenichniy-Levin-Valadier property.
Let

Γ (x) :=
⋃

i∈I(x)

∂∗ϕi (x)

where

I (x) := {i ∈ I : ϕi (x) = 0} .

We shall need the following constraint qualifications. They will be used to obtain
the necessary optimality conditions.

Definition 3 (Kabgani and Soleimani-dameneh, 2017) Let x ∈ F. We
say that

• Directional Constraint Qualification (DCQ) holds at x ∈ F iff there exist
some y ∈ F and ε > 0 such that y + ε d

‖d‖ ∈ F, for each d ∈ Γ (x) .

• Abadie Constraint Qualification (ACQ) holds at x ∈ F iff Γ (x)
◦
⊆ TF (x) .

Proposition 2 Suppose that F ∈ L (x) and that Assumption 1 is fulfilled. If
DCQ holds at x and if Γ (x) is compact, then pos Γ (x) is closed.

Proof The result is a direct consequence of Kabgani and Soleimani-dameneh
(2017), Theorem 3.3 (ii) and Lemma 3.1 (iii)-(iv).

Theorem 1 Let x be a weakly efficient solution of (UCP ), for which DCQ
holds. Assume that Assumption 1 is fulfilled, that F ∈ L (x) , that Γ (x) is
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compact and that fs, s ∈ S, admits a bounded USRCF ∂∗fs (x) , s ∈ S, at x.
Then, there exist λ∗s ≥ 0, s ∈ S, and τi ≥ 0, i ∈ I (x) , such that

∑

s∈S

λ∗s = 1 (4)

and

0 ∈
∑

s∈S

λ∗s conv ∂
∗fs (x) +

∑

i∈I(x)

τi conv







⋃

vi∈Vi(x)

∂∗xgi (x, vi)







. (5)

Proof Suppose that x is a weakly robust efficient solution of (UCP ) . Then,
we can find s0 ∈ S such that

fs0 (x)− fs0 (x) ≥ 0, ∀x ∈ F.

Consequently,

max
s∈S

(fs (x)− fs (x)) ≥ 0, ∀x ∈ F.

The preceding inequality implies that xminimizes ψ (x) := max
s∈S

(fs (x)− fs (x))

over the set F. Notice that ψ (x) = 0.

• We claim

sup
η∈∂∗ψ(x)

〈η, d〉 ≥ 0, ∀d ∈ DF (x) (6)

where ∂∗ψ (x) stands for a bounded USRCF of ψ at x. Now, to the con-
trary, suppose that there exists d0 ∈ DF (x) such that

sup
η∈∂∗ψ(x)

〈η, d0〉 < 0.

Since

ψ+ (x; d0) = sup
η∈∂∗ψ(x)

〈η, d0〉,

we can find t > 0 satisfying x + td0 ∈ F and ψ (x+ td0) < ψ (x) , which
contradicts the optimality of x.

• We claim that there exists τi ≥ 0, i ∈ I (x) , such that

0 ∈ conv ∂∗ψ(x) +
∑

i∈I(x)

τi conv







⋃

vi∈Vi(x)

∂∗xgi (x, vi)







. (7)
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Indeed, by combining (1) and (6), we obtain

sup
η∈∂∗ψ(x)

〈η, d〉 ≥ 0, ∀d ∈ TF (x) .

Consequently,

sup
η∈conv ∂∗ψ(x)

〈η, d〉 ≥ 0, ∀d ∈ TF (x) .

By Kabgani and Soleimani-dameneh (2017, Theorem 3.3 (i)) and Lemma
3.1 (ii), we deduce that ACQ holds at x and that TF (x) = Γ (x)

◦
. Then,

sup
η∈conv ∂∗ψ(x)

〈η, d〉 ≥ 0, for all d ∈ Γ (x)
◦
.

Therefore,

sup
η∈conv ∂∗ψ(x)

〈η, d〉 ≥ 0, for all d ∈ (pos Γ (x))
◦
.

Since ∂∗ψ (x, y) is also a closed set, conv ∂∗ψ (x, y) is a compact set (see
Hiriart-Urruty and Lemarechal, 2001, Theorem 1.4.3). By Lemma 1 we
get

0 ∈ conv ∂∗ψ (x) + cl pos Γ (x) .

By Proposition 2, since Γ (x) is compact and since DCQ holds at x, we
deduce that pos Γ (x) is closed. Consequently,

0 ∈ conv ∂∗ψ (x) + pos Γ (x) .

By Kabgani and Soleimani-dameneh (2019, Theorem 5.2), we can find
τi ≥ 0, i ∈ I (x) , such that

0 ∈ conv ∂∗ψ(x) +
∑

i∈I(x)

τi conv ∂
∗ϕi (x) . (8)

By combining (3) and (8) , we obtain the desired inclusion.

• From (8) , using Proposition 1, we get

0 ∈ conv

(

⋃

s∈S

∂∗fs (x)

)

+
∑

i∈I(x)

τi conv







⋃

vi∈Vi(x)

∂∗xgi (x, vi)







. (9)

Consequently, by Lemma 2, we can find λ∗s ≥ 0, s ∈ S, such that

∑

s∈S

λ∗s = 1
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and

0 ∈
∑

s∈S

λ∗s conv ∂
∗fs (x) +

∑

i∈I(x)

τi conv







⋃

vi∈Vi(x)

∂∗xgi (x, vi)







.

The following Theorem 2 makes use of ACQ instead of DCQ. The argument
is similar to that of Theorem 1, since the closeness of pos Γ (x) is assumed
directly, instead of the compactness of Γ (x) .

Theorem 2 Let x be a weakly efficient solution of (UCP ), for which ACQ
holds. Assume that Assumption 1 is fulfilled, that F ∈ L (x) , that pos Γ (x)
is closed and that fs, s ∈ S, admits a bounded USRCF ∂∗fs (x) , s ∈ S, at x.
Then, there exist λ∗s ≥ 0, s ∈ S, and τi ≥ 0, i ∈ I (x) , such that (4) and (5)
hold.

The following example illustrates Theorem 1.

Example 2 Let R
n = R

2, R
k = R

2, R
m = R

2, V1 =
[

−π
2 , π

]

and V2 =
[

− 1
2 , 0

]

. Let f1 : R2 → R and f2 : R2 → R be defined by

f1 (x) = 4 |x1| −
1

2
x2, f2 (x) = x1 + x2, ∀x = (x1, x2) ∈ R

2.

We consider the problem (UCP ) with the constraint functions g1 : R2×V1 → R

and g2 : R2 × V2 → R, given by

g1 (x, v1) = x21 |cos v1| − 1, ∀v1 ∈ V1,

and

g2(x, v2) = |x2| − 2 + ln (1 + v2) , ∀v2 ∈ V2.

By computation, we obtain

ϕ1 (x) = max
v1∈V1

g1 (x, v1) = x21 − 1 and ϕ2 (x) = max
v2∈V2

g2 (x, v2) = |x2| − 2.

Therefore,

F = [−1, 1]× [−2, 2] .

f1 (x)−f1 (x) = 4 |x1|−
1

2
x2−3, f2 (x)−f2 (x) = x1+x2−3, ∀x = (x1, x2) ∈ R

2.

Let x = (1, 2) ∈ F. In this case,

S = {1, 2} , I (x) = I = {1, 2} , V1 (x) = {0, π} , V2 (x) = {0}
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and

Γ (x) = {(2, 0) , (0, 1) , (0,−1)} .

The functions f1 and f2 admit

∂∗f1 (x) =

{(

−4,−
1

2

)

,

(

4,−
1

2

)}

and ∂∗f2 (x) = {(1, 1)}

as bounded USRCF at x. Notice that Assumption 1 is fulfilled, that Γ (x) is
compact and that x is a weak robust efficient solution of the problem (UCP).

• F is locally star-shaped at x = (1, 2) ∈ F due to the convexity of F.
• DCQ holds at x. Indeed, for y = (0, 1) and ε = 1

2 , we get y + ε d
‖d‖ ∈ F,

for each d ∈ Γ (x) .
• Upon noticing that

(

− 2
3 ,−

1
2

)

∈ conv ∂∗f1 (x) , inclusion (5) is satisfied
for λ∗1 = 3

4 , λ
∗
2 = 1

4 , τ1 = 1
8 and τ2 = 1

8 .

The following example explains how to employ Theorem 1.

Example 3 Let R
n = R

2, R
k = R

2, R
m = R

2, V1 =
[

−π
2 , π

]

and V2 =
[−2,−1] . Let f1 : R2 → R and f2 : R2 → R be defined by

f1 (x) = x22 + 2x2 (1− x1) , f2 (x) = 2x2 + x31, ∀x = (x1, x2) ∈ R
2.

We consider the problem (UCP) with a constraint function g1 : R2 × V1 → R

and g2 : R2 × V2 → R, given by

g1 (x, v1) = x21 sin v1, g2(x, v2) = x22 − v22 , ∀v1 ∈ V1, ∀v2 ∈ V2.

By computation, we obtain

ϕ1 (x) = max
v1∈V1

g1 (x, v1) = x21 and ϕ2 (x) = max
v2∈V2

g2 (x, v2) = x22 − 1.

Therefore,

F = {0} × [−1, 1] .

Let x = (0, 1) ∈ F. In this case,

S = {1, 2} , I (x) = I = {1, 2} , V1 (x) =
{π

2

}

,

V2 (x) = {−1} , ∂∗f1 (x) = {(−2, 4)} , ∂∗f2 (x) = {(0, 2)}

and

Γ (x) = {(0, 0) , (0, 2)} .

Remark that Assumption 1 is fulfilled and that Γ (x) is compact.

• F is locally star-shaped at x ∈ F due to the convexity of F.
• DCQ holds at x. Indeed, for y = (0, 14 ) and ε = 1

4 , we get y + ε d
‖d‖ ∈ F,

for each d ∈ Γ (x) .
• Notice that for all λ∗s ≥ 0, s ∈ S, and τi ≥ 0, i ∈ I (x) , inclusions (4)−(5)

are never satisfied. Taking into account Theorem 1, one sees that x ∈ F
is not a weakly efficient solution of (UCP ) .
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Chen, J., Köbis, E. and Yao, J.C. (2019) Optimality conditions and dual-
ity for robust nonsmooth multiobjective optimization problems with con-
straints. Journal of Optimization Theory and Applications 181, 411–436.

Chuong, T.D. (2016) Optimality and duality for robust multiobjective opti-
mization problems. Nonlinear Analysis 134, 127–143.

Clarke, F.C. (1983) Optimization and Nonsmooth Analysis. New York,
Wiley-Interscience.

Craven, B.D. and Islam, S.M. (2012) Linear programming with uncertain
data: Some extensions to robust optimization. Journal of Optimization
Theory and Applications 155, 673–679.

Demyanov, V.F. and Jeyakumar, V. (1997) Hunting for a smaller convex
subdifferential. Journal of Global Optimization 10, 305–326.

Dutta, J. and Chandra, S. (2002) Convexifactors, generalized convexity,
and optimality conditions. Journal of Optimization Theory and Applica-
tions 113, 41–64.

Dutta, J. and Chandra, S. (2004) Convexifactors, generalized convexity
and vector optimization. Optimization 53, 77–94.

Ewing, G.M. (1977) Sufficient conditions for global minima of suitably convex
functionals from variational and control theory. SIAM Review 19, 202–
220.

Gadhi, N.A. (2021) Comments on “A Note on the Paper “Optimality Con-
ditions for Optimistic Bilevel Programming Problem Using Convexifac-



302 A. Gadhi andd M. Ohda

tors””. Accepted for publication in Journal of Optimization Theory and
Applications.

Gadhi, N. A. and Ichatouhane, A. (2021) A note on the paper “Optimality
conditions for nonsmooth interval-valued and multiobjective semi-infinite
programming”. RAIRO-Oper. Res. 55, 13–22.

Hiriart-Urruty, J.B. and Lemarechal, C. (2001) Fundamentals of Con-
vex Analysis. Springer-Verlag, Berlin Heidelberg.

Jeyakumar, V. and Luc, D.T. (1999) Nonsmooth calculus, minimality,
and monotonicity of convexificators. Journal of Optimization Theory and
Applications 101, 599–621.

Jeyakumar, V., Li, G. and Lee, G. M. (2012) Robust duality for gener-
alized convex programming problems under data uncertainty. Nonlinear
Analysis 75, 1362–1373.

Kabgani, A. and Soleimani-damaneh, M. (2017) Characterization of (weakly/
properly/robust) efficient solutions in nonsmooth semiinfinite multiobjec-
tive optimization using convexificators. Optimization 67, 217–235.

Kabgani, A. and Soleimani-damaneh, M. (2019) Constraint qualifications
and optimality conditions in nonsmooth locally star-shaped optimization
using convexificators. Pacific Journal of Optimization 15, 399–413.

Kanzi N. (2011) Necessary optimality conditions for nonsmooth semi-infinite
programming problems. Journal of Global Optimization 49, 713–725.

Kaur S. (1983) Theoretical studies in mathematical programming. PhD the-
sis. University of Delhi.

Kuroiwa, D. and Lee, G. M. (2012) On robust multiobjective optimization.
Vietnam Journal of Mathematics 40, 305–317.

Lee, G. M. and Son, P.T. (2014) On nonsmooth optimality theorems for ro-
bust optimization problems. Bulletin of the Korean Mathematical Society
51, 287–301.

Li, X. F. and Zhang, J. Z. (2006) Necessary optimality conditions in terms of
convexificators in Lipschitz optimization. Journal of Optimization Theory
and Applications 131, 429–452.

Li, C., Ng, K.F. and Pong T.K. (2008) Constraint qualifications for convex
inequality systems with applications in constrained optimization. SIAM
Journal on Optimization 19, 163–187.

Li, W., Nahak, C. and Singer, I. (2000) Constraint qualifications for semi-
infinite systems of convex inequalities. SIAM J Optim. 11, 31–52.

Mordukhovich, B.S. and Shao, Y. (1995) On nonconvex subdifferential
calculus in Banach spaces. Journal of Convex Analysis 2, 211–227.

Saadati, M. and Oveisiha, M. (2021) Optimality conditions for robust non-
smooth multiobjective optimization problems in Asplund spaces. arXiv
preprint arXiv:2105.14366.

Tung, L.T. (2020) Karush-Kuhn-Tucker optimality conditions and duality for
convex semi-infinite programming with multiple interval-valued objective
functions. Journal of Applied Mathematics and Computing 62, 67–91.


