PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of a systematic study of the influence of meridional contours overlap in the stator-rotor axial interspace of the impulse and reactive type stages of a high-pressure steam turbine on the flow structure and gas-dynamic efficiency of the flow part are introduced. The studied flow parts of the impulse and reactive stages are typical for high-power high-pressure steam turbines. It is shown that the stages that have no overlaps and/or have a smooth shape of meridional contours have the best gasdynamic efficiency, and the most negative effect on the flow part is caused by the presence of caverns in the stator-rotor interspace. For cases where, due to technological limitations, it is impossible to avoid the presence of caverns and overlaps with a sharp (step-wise) change in the shape of the meridional contours, it is recommended to perform overlaps with positive size of overlap values near the rotor blades.
Rocznik
Strony
97--114
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • The A. N. Pidgorny Institute of Mechanical Engineering Problems NAS of Ukraine, Dm. Pozharsky 2/10, 61046 Kharkiv, Ukraine
  • The A. N. Pidgorny Institute of Mechanical Engineering Problems NAS of Ukraine, Dm. Pozharsky 2/10, 61046 Kharkiv, Ukraine
Bibliografia
  • [1] Zhu Y., Luo J., Liu F.: Influence of blade lean together with blade clocking on the overall aerodynamic performance of a multi-stage turbine. Aerosp. Sci. Technol 80(2018), 329–336.
  • [2] Tulsidasa D., Shantharaja M.: Effect of taper and twisted blade in steam turbine. Int. J. Sci. Technol. Manage. 4(2015), 1, 319–325.
  • [3] Lampart P., Gardzilewicz A., Rusanov A., Yershov S.: The effect of stator blade compound lean and twist on flow characteristics of a turbine stage – numerical study based on 3D NS simulations. In: Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/ Chemical Systems with Industrial Applications, ASME PVP Div. Conf., 1-5 Aug. 1999, Boston, 397(1999), 195–204.
  • [4] Benner M.W., Sjolander S.A., Moustapha S.H.: Influence of leading-edge geometry on profile losses in turbines at off-design incidence: Experimental results and an improved correlation. J. Turbomach. 119(1997), 193–200.
  • [5] Lee J.F.: Theory and Design of Steam and Gas Turbines. McGraw-Hill, London 1999.
  • [6] Oprea I., Negreanu G.: Research on the long blades of the steam turbine. In: Proc. Conf.: METIME 2005, 2005.
  • [7] Stodola A.: The Steam Turbine and the Future of Heat Engines. St. Petersburg 1904 (in Russian).
  • [8] Shcheglyaev A.V.: Steam turbines. Thermal Process Theory and Turbine Construction. Vol. 2, (6th Edn.). Energoatomizdat, Moscow 1993 (in Russian).
  • [9] Kazandzhan P.K., Tikhonov N.D.: Theory of Aircraft Engines. The Theory of Blade Machines: Part 1. Mechanical Engineering, Moscow 1995 (in Russian).
  • [10] Kostyuk A.G.: Some pressing problems of design and modernization of steam turbines. Therm. Power Eng. 4(2005), 16–27 (in Russian).
  • [11] Ainley D.G.; Mathieson C.R.: An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines. Aeronaut. Res. Counc. Rep. Memo. Techn. Rep. 2891, London 1955.
  • [12] Osipov S.K.: Computational and experimental study of variants of the LP flow parts in order to increase their throughput. PhD thesis, National Research University Moscow Energy Institute, Moscow 2019.
  • [13] Baljé O.: Turbomachines – A Guide to Design, Selection and Theory. Wiley & Sons, New York 1981.
  • [14] Craig H.R.M., Cox H.J.A.: Performance estimation of axial flow turbines. P.I. Mech. Eng. 185(1970), 1, 407–424.
  • [15] Trukhny A.D.: Stationary Steam Turbines (2nd Edn.). Energoatomizdat, Moscow 1990 (in Russian).
  • [16] Diakunchak I.S., Gaul G.R., McQuiggan G., Southall L.R.: Siemens Westinghouse Advanced Turbine Systems Program Final Summary. American Society of Mechanical Engineers. GT–2002–30654, 2002.
  • [17] Scoretz M., Williams R.: Industrial Steam Turbine Value Packages. GE Energy, Atlanta 2008.
  • [18] Minchener A.: Developments in China’s coal-fired power sector. IEA Clean Coal Centre., London 2010,
  • [19] Rusanov A., Rusanov R., Lampart P.: Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Eng. 5(2015), 399–410.
  • [20] Yershov S., Rusanov A., Gardzilewicz A., Lampart P.: Calculations of 3D viscous compressible turbomachinery flows. In: Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications. ASME PVP Division Conf., 1–5 August 1999, Boston, PVP, 397.2(1999), 143–154.
  • [21] Godunov S.K., Zabrodin A.V., Ivanov M.Ya. et al.: Numerical Solution of Multidimensional Problems of Gas Dynamics. Nauka, Moskow 1976 (in Russian).
  • [22] Rusanov A.V., Lampart P., Pashchenko N.V., Rusanov R.A.: Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95. Pol. Marit. Res. 23(2016), 1(89), 61–67.
  • [23] Lampart P., Rusanov A., Yershov S., Marcinkowski S., Gardzilewicz A.: Validation of 3D RANS Solver with a state equation of thermally perfect and calorically imperfect gas on a multi-stage low-pressure steam turbine flow. J. Fluid. Eng. – T ASME 127(2005), 83–93.
  • [24] Lampart P., Yershov S., Rusanov A., Szymaniak M.: Tip leakage/main flow interaction in multi-stage HP turbines with short-height blading. In: Proc. ASME Turbo Expo 2004 5 B, 1359–1367.
Uwagi
National Academy of Sciences of Ukraine was funding the research described in this article within the framework of the budgetary theme II-14-20 “Development of methods to increase the efficiency of high-pressure power units through the introduction of steam and gas technologies” under the program aimed to support the development of priority areas of research.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9a1f9cc-ed46-4f13-aa09-f8cb1bb4c858
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.