PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Link range optimisation for detection methods under scintillation effects on FSO system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Free-space optical (FSO) communication is a promising technology that aims to solve the problem of limited bandwidth in modern cellular communication systems. This work investigates the FSO communication systems under varying atmospheric conditions using direct, Mach-Zehnder interferometer (MZI), and coherent detection methods. A detailed analysis evaluates their trade-offs in cost, complexity, and performance. Results indicate that coherent detection achieves the highest link range with an optimal bit error rate (BER) across all turbulence regimes, with maximum feasible ranges of 7.4 km, 6.6 km, and 6.5 km under weak, moderate, and strong scintillation, respectively. Further, optimising local oscillator (LO) power significantly improves system reliability under strong turbulence, enabling robust communication. This study highlights the advantages of coherent detection for FSO systems, particularly in strong scintillation regimes which provide better receiver sensitivity and link range coverage.
Rocznik
Strony
art. no. e154745
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Department of Electronics Engineering, MIT Campus, Anna University, Chennai, 600044-Tamil Nadu, India
autor
  • Department of Electronics Engineering, MIT Campus, Anna University, Chennai, 600044-Tamil Nadu, India
autor
  • Department of Electronics Engineering, MIT Campus, Anna University, Chennai, 600044-Tamil Nadu, India
  • Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, 600127-Tamil Nadu, India
Bibliografia
  • [1] Kadem, K. H. & Mohammed, M. F. Enhancement security and camouflage for free-space optical communication system reliance on switching between structured light beams. Opto-Electron. Rev. 32, e152684 (2024). https://doi.org/10.24425/opelre.2024.152684.
  • [2] Song, S., Wu, J., Liu, Y. & Guo. L. A novel low-complexity high-order DPSK system with constellation reconstruction for FSO communication. IEEE Wirel. Commun. Lett. 11, 2031-2035 (2022). https://doi.org/10.1109/LWC.2022.3191659
  • [3] Krishna, K. M., Madhan, M. G. & Ashok. P. Performance predictions of VCSEL based cascaded fiber-FSO RoF system for 5G applications. Optik 257, 168740 (2022). https://doi.org/10.1016/j.ijleo.2022.168740.
  • [4] Prakash, P., Kasthuri, P., Ganeshmadhan, M. & Prakash, A. Simulations of mode division multiplexed free space optics with photonicstraversal filter using multi-mode fiber. Inf. MIDEM 51, 207–213 (2021). https://doi.org/10.33180/infmidem2021.401
  • [5] Anuranjana, S., Kaur, R., Goyal, R. & Chaudhary, S. 1000 Gbps MDM-WDM FSO link employing DP-QPSK modulation scheme under the effect of fog. Optik 257, 168809 (2022). https://doi.org/10.1016/j.ijleo.2022.168809
  • [6] Mahmood, A. S. An approach to investigating the feasibility of free-space optical communication technology deployment under scintillation effects. Opto-Electron. Rev. 31, e147037 (2023). https://doi.org/10.24425/opelre.2023.147037
  • [7] Gao, S., Dang, A. & Guo, H. Performance of Wireless Optical Communication Systems Using DPSK Modulation. in 2009 11th International Conference on Advanced Communication Technology 1793–1796 (IEEE, 2009).
  • [8] Wang, Z., Zhong, W.-D., Fu, S. & Lin, C. Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photon. J. 1, 277–285 (2009) https://doi.org/10.1109/JPHOT.2009.2039015
  • [9] Jaworski, M. Optical Modulation Formats for High-Speed DWDM Systems. in Proceedings of 2003 5th International Conference on Transparent Optical Networks 162–165 (IEEE, 2003). https://doi.org/10.1109/ICTON.2003.1263171
  • [10] Padhy, J. B. & Patnaik, B. Multiplexed free-space optical system design using Manchester coding. Optik 174, 266–273 (2018). https://doi.org/10.1016/j.ijleo.2018.07.140
  • [11] Xie, G., Dang, A. & Guo, H. Performance Analysis of Free Space Optical Communication Based on DPSK Modulation. in Lasers Sources and Related Photonic Devices OSA Technical Digest Series (CD) LSMC5 (Optica Publishing Group, 2010). https://opg.optica.org/abstract.cfm?URI=LSC-2010-LSMC5
  • [12] Nasu, Y. et al. Polarization Insensitive MZI-Based DQPSK Demodulator with Asymmetric Half-Wave Plate Configuration. in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OThE5 (Optica Publishing Group, 2008).
  • [13] Ho, K.-P. Phase-Modulated Optical Communication Systems. (Springer-Verlag, 2005).
  • [14] Patnaik, B. & Sahu, P. K. Novel QPSK Modulation for DWDM Free Space Optical Communication System. in 2012 Wireless Advanced (WiAd) 170–175 (IEEE, 2012). https://doi.org/10.1109/WiAd.2012.6296557
  • [15] Palanisamy, A. R. et al. 10 Gbps CPFSK FSO system under various adverse atmospheric conditions: performance analysis. Opt. Quant. Electron. 55, 911 (2023). https://doi.org/10.1007/s11082-023-05169-x
  • [16] Patnaik, B. & Sahu, P. K. Inter-satellite optical wireless communication system design and simulation. IET Commun. 6, 2561–2567 (2012). https://doi.org/10.1049/iet-com.2012.0044
  • [17] Mandal, S. K., Bera, B. & Dutta, G. G. Free Space Optical (FSO) Communication Link Design under Adverse Weather Condition. in 2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE) 1–6 (IEEE, 2020). https://doi.org/10.1109/iccece48148.2020.9223023
  • [18] Lim, H.-C. et al. Performance analysis of DPSK optical communication for LEO-to-ground relay link via a GEO Satellite. J. Astron. Space Sci. 37, 11–18 (2020). https://doi.org/10.5140/jass.2020.37.1.11
  • [19] Selvendran, S. & Sivanantharaja, A. Analysis of four wave mixing under different all optical modulation formats. J. Nonlinear Opt. Phys. 22, 1350034 (2013). https://doi.org/10.1142/s0218863513500343.
  • [20] Singh, H. Design and analysis of high-speed free space optical (FSO) communication system for supporting fifth generation (5G) data services in diverse geographical locations of India. IEEE Photon. J. 13, 1–12 (2021). https://doi.org/10.1109/JPHOT.2021.3113650
  • [21] Faruk, M. S. & Kikuchi, K. Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation. IEEE Photon. J. 5, 7800110 (2013). https://doi.org/10.1109/JPHOT.2013.2251872
  • [22] Patel, D. K. & Mandloi, A. S. Data reliability enhancement using RS coded DP-16-QAM based FSO system under different weather conditions. Opt. Quantum Electron. 53, 228 (2021). https://doi.org/10.1007/s11082-021-02989-7
  • [23] Ali, M. A. A., Adnan, S. A. & Al-Saeedi, S. A. Transporting 8 × 10 Gbps WDM Ro-FSO under various weather conditions. J. Opt. Commun. 41, 99–105 (2017). https://doi.org/10.1515/joc-2017-0140
  • [24] Sovmaja Vathsan, M. S., Kasthuri, P., Poornachari, P. & Sasistnradevi, A. Analysis of atmospheric attenuation of a FSO-WDM system for long-range communication. J. Opt. Commun. 45, 2059–2066 (2023). https://doi.org/10.1515/joc-2023-0157
  • [25] Kaushal, H., Jain, V. K. & Kar, S. Free Space Optical Communi-cation. (Springer, 2017).
  • [26] Kaur, S. Analysis of inter-satellite free-space optical link performance considering different system parameters. Opto-Electron. Rev. 27, 10–13 (2019). https://doi.org/10.1016/j.opelre.2018.11.002
  • [27] Pate, D. K., Mandloi, A., Srivastava, V. & Tripathi, A. Investigation of RS-Code DP-QPSK enabled FSO Communication Link under various Atmospheric Conditions. in 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) 223–228 (IEEE, 2022). https://doi.org/10.1109/CSNDSP54353.2022.9908011
  • [28] Handura, M. R., Ndjavera, K. M., Nyirenda, C. N. & Olwal, T. O. Determining the feasibility of free space optical communication in Namibia. Opt. Commun. 366, 425–430 (2016). https://doi.org/10.1016/j.optcom.2015.12.057
  • [29] El-Nahal, F., Xu, T., AlQahtani, D. & Leeson, M. A bidirectional wavelength division multiplexed (WDM) free space optical communication (FSO) system for deployment in data center networks (DCNs). Sensors 22, 9703 (2022). https://doi.org/10.3390/s22249703
  • [30] Singh, H. & Mittal, N. Link budget analysis of free space optical communication link for atmospheric conditions of India. Mater. Today: Proc. 48, 1064–1069 (2022). https://doi.org/10.1016/j.matpr.2021.07.188
  • [31] Liang, J., Chaudhry, A. U., Erdogan, E. & Yanikomeroglu, H. Link Budget Analysis for Free-Space Optical Satellite Networks. in 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 471–476 (IEEE, 2022). https://doi.org/10.1109/WoWMoM54355.2022.00073
  • [32] Li, X. et al. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation. Appl. Opt. 56, 4695–4701 (2017). https://doi.org/10.1364/AO.56.004695
  • [33] Rajput, S. J. & Acharya, Y. B. Performance analysis of 25 Gbps DP-QPSK based CO-OFDM-FSO link incorporating spatial diversity under climate conditions and atmospheric turbulence. Prog. Electromagn. Res. C 133, 151–165 (2023). https://doi.org/10.2528/pierc23031505
  • [34] Prabu, K., Charanya, S., Jain, M. & Guha, D. BER analysis of SS-WDM based FSO system for Vellore weather conditions. Opt. Commun. 403, 73–80 (2017). https://doi.org/10.1016/j.optcom.2017.07.012
  • [35] Badar, N., Jha, R. K. & Towfeeq, I. Performance analysis of an 80 (8×10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma–Gamma fading model. Opt. Quantum Electron. 50, 44 (2018). https://doi.org/10.1007/s11082-017-1306-y
  • [36] Grover, A. & Sheetal, A. Improved performance investigation of 10 Gb/s–10 GHz 4-QAM based OFDM-Ro-FSO transmission link. J. Opt. Commun. 44, 1141–1148 (2019). https://doi.org/10.1515/joc-2019-0223
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a99dda39-f81d-4747-8fff-12b62a50f7ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.