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Abstract. A novel model of dynamically programmed attributed regular gram-

mars, DPAR, for the ECG diagnosis justification purposes is presented in the

paper. A formal model, power properties and a case of DPAR grammar are

described. The formalism of DPAR grammars allows to differentiate between

certain subclasses of ECG phenomena.
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1. Introduction

ECG diagnosis process has been supported by computer systems for more than half
a century [18]. The analysis of ECG signals has been aided both by decision-theoretic
approach and by syntactic pattern recognition methods [1, 9, 11, 13, 16, 17, 20, 21, 22].

Syntactic pattern recognition methods treat a pattern as a complex structure and
then decompose it into simpler subpatterns (that can also be decomposed into simpler
subpatterns, etc. [2, 6, 8, 15, 19].

In electrocardiography, ECG signals are treated as complex structures consisting
of substructures corresponding with different phases of electrical conduction of human
heart’s beating, for instance: P, T, Q, R, S waves, ST, PR segments and QRS complex.

This leads to a conclusion that the syntactic pattern recognition paradigm saying
that a set of different structures is treated as a formal language, can be convenient for
a descriptive structural characterization of ECG signals (e.g. for teaching medicine
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students how to describe and analyze ECG records properly). Of course, structural
patterns of such a formal language can be then analyzed by formal automata [2, 6, 8,
15] which allows for identifying diseases in ECG records.

Basic skills that are required during medical studies and physician professional
development include providing the right diagnosis along with its justification [14].
The justification itself should consist of a proper explanation on how the observations
allowed to state the final diagnosis of the observed phenomena (diseases) [3]. This
skill is crucial for the diagnosis of phenomena in charts like EEG or ECG [7, 10].
To be able to provide a correct interpretation, a physician has to determine both
structural features of EEG/ECG charts and numerical parameters (frequency of QRS
complexes, segments’ lengths, etc.). A research into developing a syntactic pattern
recognition-based system for teaching and evaluating students’ diagnostic justification
for ECG has been conducted by the author of this paper since 2012.

At the beginning, structural primitives to be used for the ECG diagnostic jus-
tification process have been specified in [4]. Based on the structural primitives, the
author defined a new class of programmed attributed regular grammars, PARG which
was used to generate ECG patterns. Eventually, the System for Teaching ElectroCar-
dioGraphy (STECG) has been implemented. The core of the system was a syntax
analyzer utilizing a class of programmed attributed finite-state automata, PAFSA [4].

The use of the STECG system showed that although the system is capable of
differentiating between main classes of ECG phenomena (e.g. various atrioventricular
and branch blocks) it fails when it comes to their specific subclasses in certain cases
(e.g. between Mobitz I and Mobitz II subclasses of the Second-degree atrioventricular
block class. This was caused by too weak generative power of PAR grammars and, in
consequence, too weak discriminative power of corresponding PAFS automata.

The results of the research into enhancing a generative/discriminative power of
the model have been presented in [5], where the author defined the dynamically pro-
grammed attributed regular grammar, DPAR grammar along with the programmed
finite-state automaton, DPAFS automaton.

In this paper the author has presented a developed version of dynamically pro-
grammed attributed regular grammars - DPAR grammars along with their detailed
formal model (presented in Section 2) , power properties (presented in Section 3)
and an example of their application for the second-degree atrioventricular block type
Mobitz I (presented in Section 4).

2. Formal model of dynamically programmed attributed regular gram-
mars

In this chapter we introduce the formal model of DPAR grammars. At the beginning
let us define a programmed attributed regular grammar, PAR grammar[4].
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Let B be the set of the logical (Boolean) values (i.e. B = {TRUE,FALSE}).
Definition 1. A programmed attributed regular grammar, PAR grammar is a

quadruple

G = (V,Σ, P, S), where

V is a finite set of symbols,
Σ ⊂ V is a set of terminal symbols, N = V \ Σ is a set of nonterminal symbols,
P is a finite set of productions of the form:

(π , X −→ α), in which

π : A −→ B is the predicate of the production applicability, A is a finite set of at-
tributes,
X −→ α , X ∈ N , α ∈ Σ ∪ ΣN is called the core ,
S ∈ N is the starting symbol.

As described in the Introduction, PAR grammars are strong enough to model
structural patterns of general classes of phenomena observed in ECG and their sub-
classes. This has been achieved by predicates of the production applicability, which
assure that primitive parameters match predefined conditions.

What is more, the research on ECG phenomena and their structural modelling
by PAR grammars showed that in order to be able to differentiate specific classes of
phenomena, like Mobitz I and Mobitz II, sometimes attributes of structural primitives
modelling the ECG records have to be compared not only with constant (predefined)
values, but also with some of the previously analyzed structural primitives’ attributes.
This leads to the conclusion that we needed to construct a stronger grammar than
the PAR grammar. Then it has been decided that a programming formalism has to
be included to enable such dynamic comparisons.

Let R be the set of real numbers. Before we introduce DPAR grammars let us
define auxiliary notions.

Let AΣ be a finite set of attributes of terminal symbols and VA be a finite set of
auxiliary variables.

Definition 2. A simple condition over AΣ,VA is defined in the following way.

� TRUE,FALSE are simple conditions.

� If a1, a2 ∈ AΣ ∪ VA is a numerical attribute, r ∈ R, then:
a1 = a2, a1 6= a2, a1 > a2, a1 ≥ a2, a1 < a2, a1 ≤ a2,
a1 = r, a1 6= r, a1 > r, a1 ≥ r, a1 < r, a1 ≤ r
are simple conditions.

� If a ∈ AΣ ∪ VA is a logical attribute (flag), then a is a simple condition.

Definition 3. A valid condition over AΣ,VA, denoted CAΣ,VA is defined in the
following way.
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� Any simple condition is a valid condition.

� If sc1, sc2, ..., scn are simple conditions, then sc1 AND sc2 AND ... AND scn
is a valid condition, where AND is the conjunction operator1.

� If c1, c2 are simple conditions or conjunction conditions, then IF c1 THEN c2
is a valid condition, where IF ... THEN ... is the conditional statement2.

Definition 4. A simple ascription over VA is defined in the following way.

� none representing no ascription is a simple ascription.

� If a1, a2 ∈ VA, r ∈ R, then a1 := a2, a1 := r are simple ascriptions.

Definition 5. A valid ascription over VA, denoted UVA is defined in the following
way.

� Any simple ascription is a valid ascription.

� If sa1, sa2, ..., san are simple ascriptions, then a sequence sa1; sa2; ...; san is a
valid ascription.

Now we introduce a definition of a dynamically programmed attributed regular
grammar - DPAR grammar.

Definition 6. A dynamically programmed attributed regular grammar, DPAR
grammar is a quadruple

G = (V,Σ, P, S), where

V is a finite set of symbols,
Σ ⊂ V is a set of terminal symbols, N = V \ Σ is a set of nonterminal symbols,
P is a finite set of productions of the form:

(π, X −→ α, CM), in which

π : CAΣ,VA −→ B is the predicate of the production applicability, CAΣ,VA is the
valid condition over AΣ,VA,

X −→ α , X ∈ N , α ∈ Σ ∪ ΣN is called the core,

CM is the control mapping ascribing values to auxiliary variables in the form of
a valid ascription UVA over VA,

1 In the sense assumed in programming languages.
2 In the sense assumed in programming languages.
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S ∈ N is the starting symbol.

We define the derivation in a DPAR grammar in an analogical way as for Chom-
sky’s grammar.

Definition 7. Let β, δ ∈ V ∗, G = (V,Σ, P, S) be a DPAR grammar. We write

β =⇒
G

δ (or β =⇒ δ, if G is known)

if the following conditions hold:

� β = η1Xη2 , δ = η1αη2 and X −→ α is the core of (π : X −→ α,CM) ∈ P ,

� π is TRUE,

� attributes of terminal symbols of δ have been set according to CM ,

� auxiliary variables have been set according to CM .

We say that β directly derives δ in G. Such direct deriving is called a derivational
step in G. The reflexive and transitive closure of the relation =⇒, denoted *=⇒ , is
called a derivation in G.

3. Power properties of DPAR grammars

In this section we introduce two theorems. In the first theorem we show that DPAR
(and PAR) grammars are regular grammars, i.e. the form of their cores is in the
same as that for regular grammars, so that DPAR grammars generate all regular lan-
guages. By the second theorem we show that DPAR grammars generate some proper
context-free languages.

Theorem 1. L(REG) ⊂ L(DPAR)

To be able to prove the above statement let us define (accordingly to the DPAR
grammar definition) a DPAR grammar with such predicates of the grammar’s pro-
ductions applicability that are always mapped to TRUE. Then we have:
AΣ = ∅
VA = ∅
We can see that we do not have any auxiliary variables, so CM control mapping

will not be able to ascribe values.
Then all the productions are of the form:

(π = TRUE, X −→ α, CM = none),

which is equal to the form:
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X −→ α,

The above form of productions is the same as the form of REG grammar produc-
tions.

Theorem 2. There exists L ∈ L(CFG) \ L(REG) such that L ∈ L(DPAR).

Let us take the typical context-free language L1 = {anbn | n ≥ 1}.

We have to show that L1 ∈ L(DPAR), i.e. there exists a grammar G1 of the
class DPAR such that L1 = L(G1). To prove that L1 = L(G1) we will show that
L1 ⊂ L(G1) (a) and that L(G1) ⊂ L1 (b).

Let us define G1 = (V1,Σ1, P1, S1).
V1 = {S1, A,B, a, b},
Σ1 = {a, b},
VA = {lab},
P1 = {

1. π = TRUE, S1 −→ aA, CM = (lab := 1),
2. π = TRUE, A −→ aA, CM = (lab := lab + 1),
3. π = (lab > 1), A −→ bB, CM = (lab := lab − 1),
4. π = (lab > 1), B −→ bB, CM = (lab := lab − 1),
5. π = (lab = 1), B −→ b, CM = none,
6. π = (lab = 1), A −→ b, CM = none.
}.

(a) L1 ⊂ L(G1)

Let us take any α ∈ Σ∗1 such that α ∈ L1. Let n = k(k ≥ 1) so α = akbk. We will

show that α ∈ L(G1). To do so we will show that S *=⇒
G1

α. Let us show the string
of productions P1 that derives α.

For k = 1: S1
(1)

=⇒
G1

aA
(6)

=⇒
G1

ab

For k ≥ 2: S1
(1)

=⇒
G1

aA
(k−1)∗(2)

=⇒
G1

akA
(3)

=⇒
G1

akbB
(k−2)∗(4)

=⇒
G1

akbk−1B
(5)

=⇒
G1

akbk

We can see that, for k = 1, the grammar G1 allows to use the first (1) derivation
(starting from the starting symbol S1). This leads to ascribing the value of 1 to lab.
Then, as k = 1, we can use only the last production (6) which leads us to the terminal
symbol b, so it results in the word ab = a1b1.

For the k ≥ 2, after using the first (1) production only once, the grammar G1

leads to multiple (k− 1 times) usage of the second (2) production. As a result we get
a word akA, so it means the grammar has to supplement the b terminals. Thus the
third (3) production is used only once, then we use (k − 2) times the fourth produc-
tion achieving the akbk−1 word. As the fourth production decreases the lab attribute
resulting in lab = 1 value, the only production that can be now used is the fifth (5)
one, resulting in the terminal symbol b. The result of such derivation is the word akbk.
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(b) L(G1) ⊂ L1

Let us take α ∈ L(G1), α ∈ Σ∗1. To show that α ∈ L1 let us construct the tree of
possible derivations in G1. The tree has been presented in the Figure 1.

Figure 1. The tree of possible derivations in grammar G1.

The first and the only production that can be applied at the beginning of the
derivation process is the first (1) production of the grammar G1 leading to a word
in the form aA. Then, the grammar allows to use the second (2) or the sixth (6)
production only. The sixth (6) production leads to a word ab ending up the process of
the grammar’s derivation. The second (2) production allows to apply it multiple times
increasing the number of a terminal symbol. Afterwards, because of the constraints
provided by π production applicability predicates, the only production that can be
applied is the third (3) one. Next, the fourth (4) production is applied (optionally
multiple times, depending on the amount of a terminal symbols added to the word
during the derivation process) which then leads to the fifth (5) production. The
process results in the word ambm.

As we can see the grammar G1 generates a language that consists of the words in
the form ambm, m ≥ 1, which is the same form as the words of the language L1.
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qrs lack := FALSE,
potent last before qrs lack := 0,

1. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(0) −→ PRX(1),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

2. π = TRUE, X(1) −→ rsX(2), CM = none,

3. π = TRUE, X(1) −→ RX(3), CM = none,

4. π = TRUE, X(2) −→ ST+X(4), CM = none,

5. π = TRUE, X(2) −→ ST0X(5), CM = none,

6. π = TRUE, X(3) −→ ST0X(6), CM = none,

7. π = TRUE, X(4) −→ T+X(7), CM = none,

8. π = TRUE, X(5) −→ T+X(8), CM = none,

9. π = TRUE, X(6) −→ T+X(9), CM = none,

10. π = TRUE, X(7) −→ TPX(10), CM = none,

11. π = TRUE, X(8) −→ TPX(11), CM = none,

12. π = TRUE, X(9) −→ TPX(12), CM = none,

13. π = TRUE, X(10) −→ PPX(13), CM = (qrs lack := TRUE),

14. π = TRUE, X(11) −→ PPX(14), CM = (qrs lack := TRUE),

15. π = TRUE, X(12) −→ PPX(15), CM = (qrs lack := TRUE),

16. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(13) −→ PRX(16),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

17. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(14) −→ PRX(17),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

18. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(15) −→ PRX(18),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

19. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(10) −→ PRX(16),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

20. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(11) −→ PRX(17),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

21. π = ((qrs lack =⇒ lPR < potent last before qrs lack), X(12) −→ PRX(18),
CM = (potent last before qrs lack := lPR; qrs lack := FALSE),

22. π = TRUE, X(16) −→ rsX(2), CM = none,

23. π = TRUE, X(17) −→ rsX(2), CM = none,

24. π = TRUE, X(18 −→ RX(3), CM = none.

Table 1. DPAR grammar for second-degree atrioventricular block type Mobitz I.

4. Example of DPAR grammar

In this section, let us show an example of the DPAR grammar constructed for the
second-degree atrioventricular block type Mobitz I. As we can see, for some produc-
tions, there is an auxiliary variable dynamically programmed and then used for a
comparison in the following productions as a production applicability predicate.
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The formal DPAR grammar for second-degree atrioventricular block type Mobitz
I has been show in the Table 1.

5. Conclusions

As described in the introduction, a proper diagnostic justification is a very impor-
tant ability during medical studies and the beginning of professional development of
a physician.

We can distinguish two main kinds of information processing in medicine: analytic
and automatic [12]. Automatic processing assumes that a diagnostic justification is
achieved with the use of pattern recognition-like method - a new case that is to
be diagnosed is compared with known cases [12]. This mechanism is similar to the
standard pattern recognition method used in computer science. However, this kind of
diagnosis is rather used by experienced physicians. For medicine students or novice
doctors, it is more typical to analyze and interpret a case based on a biomedical
knowledge. For ECG analysis, a chart is interpreted based on its structure and
numerical parameters. This scheme corresponds with syntactic pattern recognition
methods in computer science and seems to be more suitable for teaching medical
students ECG interpretation and diagnosis.

In this paper we have presented the enhanced DPAR grammar which initially
was designed as PAR grammar in [4] and then developed into first version of DPAR
grammar in [5]. We have also described its detailed formal model along with its
power properties. Eventually, we showed an example of DPAR grammar application
for Second-degree atrioventricular block type Mobitz I.
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