PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Applicability of Flow Averaging Pitot Tubes in the Areas of Flow Disturbance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The issues connected with the complex design of various facilities, including up-to-date boiler equipment as well as the ways of organizing the space around them, are the reasons why there is often a lack of room for mounting a flowmeter in accordance with the recommendations of manufacturers. In most cases the problem is associated with ensuring sufficient lengths of straight pipe leading into and out of a flowmeter. When this condition cannot be fulfilled, the uncertainty of measurement increases above the value guaranteed by the manufacturer of the flowmeter. This sort of operation problem has encouraged the authors of this paper to undertake research aimed at the analysis of applicability of averaging Pitot tubes in the areas of flow disturbance.
Rocznik
Strony
71--84
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Opole University of Technology, Faculty of Mechanical Engineering, S. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Opole University of Technology, Faculty of Mechanical Engineering, S. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • [1] Baker, R.C. (2000). Flow Measurement Handbook. University of Cambridge.
  • [2] Chmielniak, T., Kotowicz, J., Węcel, D. (2008). Experimental and numerical investigations of the averaging Pitot tube and analysis of installation effects on the flow coefficient. Flow Measurement and Instrumentation, 19, 301‒306.
  • [3] Dobrowolski, B., Kabaciński, M., Pospolita, J. (2005). A mathematical model of the self-averaging Pitot tube A mathematical model of a flow sensor. Flow Measurement and Instrumentation, 16, 251‒265.
  • [4] Etemad, S.G., Thibault, J., Hashemabadi, S.H. (2003). Calculation of the Pitot tube correction factor for Newtonian and non- Newtonian fluids. ISA Transactions, 42, 505‒512.
  • [5] http://www.allpronix.com/wp-content/uploads/2015/08/ba_ibr_ibf_en.pdf (Sep. 2015).
  • [6] http://www.fayin.com.tw/polysonicsdatasheets/model_ssk1000.pdf (Sep. 2015).
  • [7] http://www.mesure.com/docs/Ellipse.pdf (Sep. 2015).
  • [8] http://www.testequipmentdepot.com/meriam/pdf/accutube_series.pdf (Sep. 2015).
  • [9] http://www2.emersonprocess.com/siteadmincenter/pm%20rosemount%20documents/00803-0100-6113.pdf (Sep. 2015).
  • [10] ISO 3966. (2008). Measurement of fluid flow in closed conduits ‒ Velocity area method using Pitot static tubes.
  • [11] ISO 5167-1. (2003). Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full ‒ Part 1: General principles and requirements.
  • [12] ISO 5221. (1984). Air distribution and air diffusion ‒ Rules to methods of measuring air flow rate in an air handling duct.
  • [13] Kabaciński, M., Pawliczek, R. (2012). Fully automated system for air velocity profile measurement. The Archive of Mechanical Engineering, 59(4), 435‒451.
  • [14] Kabaciński, M., Pospolita, J. (2008). Numerical and experimental research on new cross-sections of averaging Pitot tubes. Flow Measurement and Instrumentation, 19, 17‒27.
  • [15] Kabaciński, M., Pospolita, J. (2011). Experimental research into a new design of flow - averaging tube. Flow Measurement and Instrumentation, 22, 421‒427.
  • [16] Kotze, R., Wiklund, J., Haldenwang, R., Fester, V. (2011). Measurement and analysis of flow behavior in complex geometries using the Ultrasonic Velocity Profiling (UVP) technique. Flow Measurement and Instrumentation, 22, 110‒119.
  • [17] Kring, J., Travis, J. (2006). LabVIEW for Everyone: Graphical Programming Made Easy and Fun. National Instruments Virtual Instrumentation Series.
  • [18] Kumar, P., Wong Ming Bing, M. (2011). A CFD study of low pressure wet gas metering using slotted orifice meters. Flow Measurement and Instrumentation, 22, 33‒42.
  • [19] Kuznetsov, A.V. (2004). Numerical modeling of turbulent flow in a composite porous/fluid duct utilizing a two- layer k-ε model to account for interface roughness. International Journal of Thermal Sciences, 43, 1047‒1056.
  • [20] Ostrowski, P., Remiorz, L. (2013). Measurement of gas flow in short ducts, also rectangular. Flow Measurement and Instrumentation, 30, 1‒9.
  • [21] Pochwała, S., Kabaciński, M., Pospolita. J. (2012). Influence of typical flow disturbing elements on the flow rate in selected averaging Pitot tubes. Task Quaterly, 3‒4, 219‒228.
  • [22] Spitzer, D.W. (1991). Flow Measurement: practical guides for measurement and control. ISA Research Triangle Park.
  • [23] Turkowski, M., Szufleński, P. (2013). New criteria for the experimental validation of CFD simulations. Flow Measurement and Instrumentation, 34, 1‒10.
  • [24] Vinod, V., Chandran, T., Padmakumar, G., Rajan, K.K. (2012). Calibration of an averaging pitot tube by numerical simulations. Flow Measurement and Instrumentation, 24, 26‒28.
  • [25] Waluś, S. (2000). Decreasing of volume flow-rate measurement error in modified averaging impact tubes. FLOMEKO 2000 International Conference on Flow Measurement, Salvador, Brazil, FLOMEKO 2000 CDROM, B2. 84
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a99c01c8-30cd-4c25-99b0-30916ac70a60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.