PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kinetic modelling of flotation column and Jameson cell in coal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Physical enrichment technologies can be used worldwide in various coal washing plants to enrich up to 500 μm particle size. Conversely, coals smaller than this are discarded as waste, causing storage and environmental issues. In this regard, studies on coal below 500 μm in Turkey have recently acquired attraction. The Jameson flotation cell and flotation column, which have many uses worldwide but are not used throughout the plant in Turkey, were used to investigate the separation possibilities of coals below 500 μm. In the study, the flotation column and Jameson cell performances for three different particle sizes (-500+300, -300+212 and -212+106 μm) were compared. For the first time, both machines operated in a negative bias condition. In addition, the flotation kinetics of the machines were modelled with some critical operating parameters. Models illustrating the main and multiple effects of the parameters were developed using the data derived from the experimental results, and the models were statistically significant at the 95% confidence level. In the experiments performed with both flotation machines, the flotation rate increases with the decrease in particle size in general. According to the results, the velocity increase in the Jameson cell was 0.0050-0.0075 min-1 compared to the flotation column in the experiments performed in the size range of -500+300 μm, and the flotation rate constant increased approximately twice. In the size range of -212+106 μm, the difference became larger, and the flotation rate of the Jameson cell increased up to six times with a difference of 0.0450-0.0500 min-1.
Rocznik
Strony
art. no. 152848
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Kutahya Dumlupınar University, Department of Mining Engineering, Kutahya, Turkey
autor
  • Kutahya Dumlupınar University, Department of Mining Engineering, Kutahya, Turkey
autor
  • Kutahya Dumlupınar University, Department of Mining Engineering, Kutahya, Turkey
Bibliografia
  • ABKHOSHK, E., KOR, M., REZAI, B. (2010). A study on the effect of particle size on coal flotation kinetics using fuzzy logic. Expert Systems with applications, 37(7), 5201-5207.
  • AKTAS, Z., WOODBURN, E.T. (1995). The effect of non-ionic reagent adsorption on the froth structure and flotation performance of two low rank British coals. Powder Technology, 83, 2, 149-158.
  • ARBITER, N., HARRIS, C.C. (1962). Flotation kinetics. Froth Flotat. 50th Anniv., New York, AIME.
  • ATA, S., JAMESON, G. J. (2013). Recovery of coarse particles in the froth phase–A case study. Minerals Engineering, 45, 121-127.
  • BAHRAMI, A., GHORBANI, Y., GULCAN, E., KAZEMI, F., KAKAEI, H., FARAJZADEH, S. (2020). Effects of particle size distribution on flotation kinetics of bituminous coal. Iranian Journal of Chemical Engineering (IJChE), 17(2), 3-13. doi: 10.22034/ijche.2020.184831.1303
  • BEDEKOVIC, G. (2016). A study of the effect of operating parameters in column flotation using experimental design. Physicochemical Problems of Mineral Processing, 52(2), 523–535.
  • CHANDER, S., POLAT, M. (1995). Coal flotation kinetics: Interactions between physical and chemical variables. In: Plenary Lecture, Proc. Int. Conf. on Mineral Proc.-Recent Advances and Future Trends, Kanpur-India, 615–631.
  • CHEN, Y., ZHOU, B., ZHANG, X., YANG, S., HUANG, W. (2022). Understanding the role of kerosene on the coal particle and bubble attachment process. Fuel, 307, 121915.
  • COWBURN, J., HARBORT, G., MANLAPING, E., POKRAJCIC, Z. (2006). Improving the recovery of coarse coal particles in a Jameson cell. Minerals Engineering, 19, 6-8, 609-618.
  • FAHAD, M. K., PRAKASH, R., MAJUMDER, S. K., GHOSH, P. (2022). Investigation of the induction time and recovery in a flotation column: A kinetic analysis. Separation Science and Technology, 1-18.
  • GARCÍA-ZUÑIGA, H. (1935). Flotation recovery is an exponantial function of its rate. Bol.Soc.Nac.Min., Santiago, Chile, 47, 83-86.
  • GAUDIN, A. M. (1931). Effect of particle size on flotation. Technical Publication, 3-23.
  • HARBORT, G. J., MANLAPIG, E. V., DEBONO, S. K. (2002). Particle collection within the Jameson cell downcomer. Mineral Processing and Extractive Metallurgy, 111(1), 1-10.
  • HARBORT, G., DE BONO, S., CARR, D., LAWSON, V. (2003). Jameson Cell Fundamentals - A Revised Perspective, Minerals Engineering, 16, 11, 1091-1101.
  • KELEBEK, S., DEMIR, U., SAHBAZ, O., UCAR, A., CINAR, M., KARAGUZEL, C., OTEYAKA, B. (2008). The effects of dodecylamine, kerosene and pH on batch flotation of Turkey's Tuncbilek coal. International Journal of Mineral Processing, 88, 3-4, 65-71.
  • KOWALCZUK, P.B., ŞAHBAZ, O., DRZMALA, J. (2011). Maximum size of floating particles in different flotation cells. Minerals Engineering, 24, 8, 766-771.
  • Laskowski, J. S. (2001). Coal flotation and fine coal utilization. First edition, Elsevier.
  • LI, Y., ZHAO, W., GUI, X., ZHANG, X. (2013). Flotation kinetics and separation selectivity of coal size fractions. Physicochemical Problems of Mineral Processing, 49.
  • LING, X., HE, Y., WANG, J. (2017). Improving the recovery of coarse coal particles by froth feed in the conventional flotation column. International Journal of Coal Preparation and Utilization, 1-13.
  • MOHANTY, M.K., HONAKER, R.Q. (1999). Performance optimization of Jameson flotation technology for fine coal cleaning. Minerals Engineering, 12, 4, 367-381.
  • MONTGOMERY, D.C. (2009). Design and analysis of experiments-Seventh edition. Singapore, Wiley.
  • NAİK, P. K., REDDY, P. S. R., MİSRA, V. N. (2005). Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation. Int. J. Miner. Process., 75, 83-90.
  • NI, C., XIE, G., JIN, M., PENG, Y., XIA, W. (2016). The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder technology, 292, 210-216.
  • NICOL, S.K., (2001). Fine coal beneficiation. In: Swanson, A.R., Partridge, A.C. (Eds.), Advanced Coal Preparation Monograph Series, IV, 9, 107, 136.
  • NGUYEN, A., SHULZE, H.J. (2003). Colloidal science of flotation. Boca Raton, CRC Press.
  • OTEYAKA, B. (1993). Modelisation D’une Colonne De Flottation Sans Zone D’ecume Pour La Separation Des Particules Grossieres. Universite Laval, PHD Thesis.
  • OTEYAKA, B., SOTO, H., (1995). Modelling of negative bias column for coarse particles flotation. Pergamon, 8, 91-100.
  • PATWARDHAN, A., HONAKER, R.Q. (2000). Development of a carrying-capacity model for column froth flotation. Int J Miner Process, 59, 275–293.
  • Polat, M., Arnold, B., Chander, S., Hogg, R., Zhou, R. (1993). Coal flotation kinetics-effect of particle size and specific gravity. In Coal Science and Technology, 161-170.
  • POLAT, M., CHANDER, S. (2000). First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58, 1-4, 145-166.
  • SAHBAZ, O. (2013). Determining optimal conditions for lignite flotation by design of experiments and the halbich upgrading curve. Physicochemical Problems of Mineral Processing, 49, 2, 535-546.
  • SAHBAZ, O., UCAR, A., OTEYAKA, B. (2013). Velocity gradient and maximum floatable particle size in the Jameson cell. Minerals Engineering, 41, 79-85.
  • SAHU, L., Bhattacharya, S., Dey, S. (2021). Effect of reagents on flotation kinetics of differently sized feeds. International Journal of Coal Preparation and Utilization, 1-24.
  • SCHULZE, H. J. (1984). Physico-chemical elementary processes in flotation. Developments in mineral processing, 4.
  • SOTO, H. S., (1989). Column flotation with negative bias. Proceedings of The International Symposium on Processing of Complex Ores, Halifax, August 20-24, 379-388.
  • SOTO, H. S. (1992). Development of novel flotation-elutriation method for coarse phosphate beneficiation. Florida Institute of Phosphate Research.
  • SUTHERLAND, K. L. (1948). Physical chemistry of flotation. XI. Kinetics of the flotation process. The Journal of Physical Chemistry, 52(2), 394-425.
  • TAO, D. (2005). Role of bubble size in flotation of coarse and fine particles—a review. Separation science and technology, 39(4), 741-760.
  • TRAHAR, W. J. (1981), A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8, 289-327.
  • TSAI, S.C. (1985). Effects of surface chemistry and particle size and density on froth flotation of fine coal. Colloids and Surfaces, 16, 3-4, 323-336.
  • UCAR, A., SAHBAZ, O., KERENCILER, S., OTEYAKA, B. (2014). Recycling of colemanite tailings using the Jameson flotation technology. Physicochemical Problems of Mineral Processing, 50.
  • XU, M. (1998). Modified flotation rate constant and selectivity index. Minerals Engineering, 11, 271-278.
  • VAPUR, H., BAYAT, O., UÇURUM, M. (2010). Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energy Conversion and management, 51(10), 1891-1897.
  • YIANATOS, J., BERGH, L. (1991). RTD studies in an industrial flotation column: use of radioactive tracer technique, International conference on column flotation, 1 June 2-6 1991, Canada, 221-234.
  • YOU, X., LI, L., LIU, J., WU, L., HE, M., LYU, X. (2017). Investigation of particle collection and flotation kinetics within the Jameson cell downcomer. Powder Technology, 310, 221-227.
  • YUAN, X.M., PÅLSSON, B.I., FORSSBERG, K.S.E. (1996). Statistical interpretation of flotation kinetics for a complex sulphide ore. Minerals Engineering, 9, 429-442.
  • ZHANG, H., LIU, J., CAO, Y. AND WANG, Y. (2013). Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technol., 246, 658.
  • ZHANG, Z., WU, C., YAN, K. (2020). Role of dodecane on coal particle-bubble interaction in aqueous phase. Journal of Molecular Liquids, 319, 114175.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a99ba4c1-1770-4a04-9b05-5186d143220f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.