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ABSTRACT: The growing need of ocean surveying and exploration for scientific and industrial application has
led to the requirement of routing strategies for ocean vehicles which are optimal in nature. Most of the op-timal
path planning for marine vehicles had been conducted offline in a self-made environment. This paper takes into
account a practical marine environment, i.e. Portsmouth Harbour, for finding an optimal path in terms of
computational time between source and end points on a real time map for an USV. The current study makes
use of a grid map generated from original and uses a Dijkstra algorithm to find the shortest path for a single
USV. In order to benchmark the study, a path planning study using a well-known local path planning method
artificial path planning (APF) has been conducted in a real time marine environment and effectiveness is

measured in terms of path length and computational time.

1 INTRODUCTION

With the growing advances in navigation
technologies, there is a greater need to explore oceans
for resources as well as for the future needs.
Autonomous unmanned vehicles have shown the
potential towards various missions of scientific and
military  significance = depending upon the
requirement, environment and cost involved (Serreze
et al, 2008 and Legrand et al., 2003). Unmanned
vehicles can be classified into four categories namely,
unmanned aerial vehicles (UAVs), unmanned
underwater vehicles (UUVs), unmanned ground
vehicles (UGVs) and unmanned surface vehicles
(USVs). USVs are watercraft of small (<1 tonnes) or
medium (100 tonnes) size in terms of water
displacement.

The general architecture for an USV operation in a
maritime environment has three basic systems
namely, control and path planning, communication

and monitoring and obstacle detection and avoidance
(ODA), which are responsible for mission planning
and execution as shown in figure 1. Path planning is
one of the basic subsystems in the maritime operation
of USVs to generate way-points for a safe navigation
within a desired environment from start to end point.
Research and development in areas of artificial
intelligence has provided larger scope for
development in this territory of marine navigation
(Campbell et al, 2012). The abstraction of path
planning for an USV is summarized in figure 2.

Until now in path planning of an USV, global and
local approaches have been adopted, which has been
summarised in figure 3. In global approaches, the
complete information of environment is well known
while in the local approach only partial information
about the environment is known. Under global
approaches, grid map-based path planning
techniques are the best known since they generate sub
optimal trajectories with the fastest computation time
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Figure 1. General architecture of USV operation in a
maritime environment (Campbell et al., 2012)
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Figure 2. Path planning abstraction for USVs
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Figure 3. Path planning approaches for USV

1.1 Literature review

Dijkstra (1959) initiated the work in the area of grid
map-based path planning algorithm by describing the
shortest path between two nodes specified on a map.
This was later improved by Hart et al. (1968) who
introduced A’, which is an extended version of
Dijkstra algorithm. In the last two decade, many
variants of A’ have been introduced by various
researchers to improve the performance of robots
working in various environments. Stentz (1995)
introduced the first major improvement of A", focused
D" algorithm for real time path replanning which was
later improved for partially unknown environment by
induction of D" Lite (Koenig and Likhachev, 2002).
Another improvement by fixing infelicities of A’in a
dynamic environment was introduced by Likhachev
et al. (2005) through Anytime Dynamic A". Since these
algorithms do not consider the heading and dynamics
of a robot in account, another major improvement
was introduced in the form of Theta® (Nash et al.,
2007). This algorithm accounts heading angle and
yaw rate of a robot in the path planning, which is a
necessity for USV path planning since it cannot follow
an unrealistic path with sharp turns (Kruger et al.,
2007; Prasanth Kumar et al., 2005; Yang et al., 2011).
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Advanced approaches like the ant colony algorithm
(ACO) (Song, 2014) and particle swarm optimization
(PSO) (Song et al., 2015) have been adopted for USV
navigation but cannot generate trajectories in real
time due to high computational load. Along with this,
these algorithms do not give consideration to vehicle
dynamics and turning radius.

In robotics, various local path planning
approaches such as Collision Cone Concept
(Chakravarthy and Ghose ,1998), Velocity Obstacle
Approach (Fiorini and Shiller ,1998), Vector Field
Histogram (Borenstein and Koren ,1991), and APF
(Khatib, 1986), have been proposed. As most of the
robotics problem is real time, the need to have a very
fast and simple motion planner is evident. The
simplicity enables fast development and deployment
of a robot, whereas the computationally inexpensive
nature allows the algorithm to be implemented in
robots with minimum sensing capabilities. APF is one
of the simplest methods, and the method is capable of
autonomously moving a robot in realistic obstacle
framework.

After APF was introduced by Khatib (1986), many
researchers have attempted to improve the APF,
which suffers from trap situation in local minima,
oscillations in narrow passage and goals non-
reachable with obstacles nearby (GNRON) (Koren
and Borenstein, 1991). Ge and Cui (2002) included
velocity terms for target and obstacles within APF to
compute potential to correct the problem of GNRON.
Baxter et al. (2007, 2009) used APF for multiple robots
in order to correct the sensor errors. Tu and Baltes
(2006) used a fuzzy approach within APF to solve the
problem of oscillations within narrow passage.
Fahimi et al. (2009) used the concept of fluid
dynamics within APF to correct the issue of a trapped
situation in local minima.

Until now in the literature, very few studies
associated with the path planning of USV have made
use of the APF in a practical marine environment.
Most of these studies have been conducted in self-
simulated environment. The present paper makes
an effort to understand the effectiveness of APF in
path planning of USV in a practical marine
environment.

1.2 Major contribution

Many studies in marine navigation have been
conducted but most of them have been related to
collision avoidance rather than the path planning
problem (Tam et al, 2009). Even the studies
conducted on optimal USV navigation have been
struggling with the high computational load and are
inapplicable in generating trajectory in real time.
Until now in the literature, path planning approaches
have been applied on a self-simulated Euclidean SE(2)
grid map with no consideration to real time
environment. This study presents the use of the
Dijkstra algorithm in a real time environment with
minimum computational load to generate a trajectory
within a real time operation. This approach is well
suited for optimal USV navigation in a static
environment  with  minimum  computational
requirement. In order to benchmark the present
study, a well-known local path planning approach



APF has been chosen for USV path planning in a
static environment and its effectiveness is measured
in terms in terms of path length and computational
time.

The paper has been organized in four sections. The
section after the introductory material comprising of
literature review and major contribution explains the
methodology and the Dijkstra algorithm used for the
study. The third section deals with implementation of
Dijkstra algorithm in a real time marine environment
and explains its effectiveness. The fourth section
explains the concept and implementation of APF in a
real time marine environment with results. The final
section discusses the results and provides conclusions
with recommendations towards future work.

2 METHODOLOGY

2.1 Dijkstra Algorithm

There are various variants of the Dijkstra algorithm.
The variant used in this study fixes a source node
which is the start point of the USV and finds the
shortest paths from source node to all other nodes in
the graph leading to shortest- path tree. In order to
reduce the computational load in the original variant,
a sparse graph i.e. graph with fewer edges approach
has been adopted leading to more efficient storage of
graph nodes. The algorithm is defined in Algorithm 1
(Ahuja, 1990).

Algorithm 1. Dijkstra(Graph, source)

1: function Dijkstra(Graph, source):

2: create vertex set Q

3: for each vertex v in Graph: /I Initialization
4: dist[v] « INFINITY // Unknown distance from
source to v

5: prev[v] <« UNDEFINED // Previous node in
optimal path from source

6: add v to Q // All nodes initially in Q (unvisited
nodes)

7. dist[source] « 0 // Distance from source to source

8: while Q is not empty:

9: u « vertex in Q with min dist[u]
with the least distance will be selected first

10:  remove u from Q

11:  for each neighbour v of u: // v is still in Q.
12: alt « dist[u] + length(u, v)

13:  if alt < dist[v]: // A shorter path to v has been

// Node

found

14: dist[v] < alt

15: prev[v] < u

16: return dist[], prev(]

2.2 Environmental mapping

Environmental mapping is the first step in the
abstraction of path planning as shown in figure 2. In
order to use a practical environment, Portsmouth
harbor has been considered as shown in figure 4. The
map is organised as a weighted occupancy map using
a cell decomposition method (Latombe, 1991).

This map represents obstacles as black and free
space as white in a matrix of black and white as
shown in figure 5. A 800x800 pixel map size has been

used for the simulation with a resolution of 3.6
m/pixel.
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Figure 4. Aerial view of the simulation area (Source: Google
Maps

Figure 5. Grid map of the simulation area

Figure 6. The Springer USV
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Table 1. Specifications of Springer

Configuration Values
Length (m) 42
Width (m) 2.3
Displacement (tonnes) 0.6
Maximum speed (m/s) 4

3 SIMULATION

The proposed simulation was executed using
MATLAB 2015a on Intel i5 2.80GHz quad core with a
16 GB RAM. In these simulations, computational time
of the simulation for three different start nodes and a
fixed goal node have been compared in order to
determine the effectiveness of the algorithm in terms
of computational time to find an optimal trajectory in
a practical marine environment. The simulations are
assumed to be used by Springer, a USV available with
Plymouth University whose specifications have been
given in Table 1. Figure 6 shows the Springer USV.
Figure 7 shows the three cases of three different start
nodes within the grid map having a fixed goal node.
These starting nodes are chosen arbitrarily within
grid map on different positions within the simulation
area to show the effectiveness of the algorithm in
finding different trajectories with least computational
load.

Table 2. Performance analysis for three cases in terms of
computational time

Cases Computational Time (s)
Case 1 (Figure 6(a)) 6.801
Case 2 (Figure 6(b)) 5.579
Case 3 (Figure 6(c)) 6.141

Table 2 shows the comparison of computational
time for three cases as shown in figure 7. The results
show that the trajectories generated by the Dijkstra
algorithm within a huge grid map from any source
nodes satisfy the computational efficiency. All cases
are able to generate a complete path in less than 7
seconds which in turns lead to the generation of path
in less than 1 second per metre length of the distance
covered by USV. Henceforth, such an algorithm is
applicable in a real time operation where faster
optimal trajectories are needed to be generated.

Since the maximum speed of the USV for which
the algorithm is designed is 4 m/s, henceforth, the
proposed approach satisfies the dynamic constraints
of the platform. Although various factors such as
vehicle dynamics and heading angle have not been
considered in the approach, the basic objective of the
study towards generation of trajectory with minimum
computational load has been accomplished.
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Figure 7. Simulation results for three cases

4 APF: CONCEPT AND METHODOLOGY

APF solves the problem assuming all obstacles are a
source of repulsive potential, with the potential



inversely proportional to the distance of a robot from
the obstacle while the goal attracts it by applying an
attractive potential, Kala (2016). The derivative of the
potential gives the value of the virtual force applied
on the robot, based on its movement, Kala (2016). The
motion is completely reactive in nature. A schematic
of the APF is shown in figure 8.

Alirsctive Foroe @ Goal

Figure 8. Schematic of the APF

4.1 Attractive Potential

The attractive potential is applied by a single goal to
direct the robot towards itself. The attractive potential
is directly proportional to the distance between the
current position of the robot and the goal. This causes
the potential to tend to zero as the robot approaches
the goal and hence it slows down as it approaches the
goal (Kala, 2016). The potential in this study is taken
as, quadratic potential, represented in Equation (1)

1
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where x is the current position of the robot and G is
the goal. ||.|| is the Euclidean distance function and
kat is the proportionality constant, whereas the degree
is taken as 2.

The driving force is a vector whose magnitude is
measured through the derivative of the potential
function and direction as the line which maximizes
the change in potential, which is given by Equation
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u() is the unit vector.

4.2 Repulsive Potential

The repulsive potential is applied by obstacles which
repel the robot coming close and repelling it to avoid
collision. The potential is inversely proportional to the
distance so that potential tends to infinity if robot
comes near obstacle leading to repulsion. Obstacles at
a certain distance d"are considered in modeling the
potential (Kala, 2016).

The repulsive potential is given by Equation (3).
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where, x is the current distance of the robot and o; is
the position of the obstacle. ||.|| is the Euclidian
distance function and krpy is the proportionality
constant, whereas the degree is taken as 2.

The repulsive force is given by Equation (4), which
is a derivative of the repulsive potential
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4.3 Resultant Potential

The resultant potential is given by sum of attractive
and repulsive potential. This final force is henceforth,
the derivative of the resultant potential. This is given
in Equation (5).
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4.4  Methodology

In the present study, APF is used for USV navigation
within a practical marine environment i.e.
Portsmouth Harbour having a start and goal point as
shown in figure 9.

A binary map of 800 x 800 pixel grid resolution,
figure 10, is taken into account with a USV available
from Plymouth University named, Springer, shown in
figure 5 being considered in terms of kinematic
constraints for the purpose of path planning.
Parameters used in APF for path planning of Springer
are shown in Table 3.
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Figure 9. Simulation area- Portsmouth Harbour (Source:
Google Maps)
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Figure 10. Binary map of the simulation area (1 Pixel =
3.6 m)

Table 3. Parameters used in APF for path planning of
Springer

Parameters Values
Attractive Potential Scaling Factor (kar) 300000
Repulsive Potential Scaling Factor (k) 300000
Safety Distance from Obstacles (d") 30 pixels
Maximum Turn Rate 10 pi/180°
Initial Heading of USV -pi/2

Evaluation of the APF performance for USV path
planning in terms of path length and computational
time is described in Table 4. Simulation records
movement sequences of the USV within map. Figure
11 shows the sequence of USV motion from start to
goal point at different time of the motion. The overall
trajectory shows that such algorithm is efficient in
generating safe path for USV in a practical marine
environment.

Table 4 shows that USV is able to find a safe
trajectory of length 3075 m within 32.608 s which
means, less than 1 s is required by USV to find a path
of 1m. Thus real time implementation of such
algorithm is possible within a practical marine
environment. Since the APF is a parameter dependent
algorithm, there is a need to find right set of
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parameters for different case scenarios. In addition to
this, such algorithm is not complete (i.e. guarantees
finding a path in all scenarios) and is more intensive
computationally than global path planners to be used
in marine robots which have limited on board
capability.

Table 4. Performance of APF in Springer navigation

Parameters Value
Path Length 3075 m
32.608 s
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Figure 11. Sequence of USV motion from start to end point

5 CONCLUSION

In this paper, a computationally efficient Dijkstra
algorithm to find a path between a source and goal
node on a grid map is proposed. The performance
was measured in terms of computational time for
three different cases, where source points where
chosen arbitrarily. The results show that the proposed
approach satisfies the computational requirement of
the path planning in a real time environment. In order
to benchmark the study, a well-known local path
planning algorithm APF was also studied and results
were presented. Dijkstra algorithm was found more
effective in terms of finding path optimally and
computationally. In conclusion, this new approach is
suitable for global path planning of an USV in a static
environment. Towards future work, vehicle dynamics
and environmental disturbances can be included in
the grid map to better understand the applicability of
this approach in a dynamic environment.
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