PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic Safety Assessment of ESBWR gravity driven cooling system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to Polish nuclear law, newly emerging nuclear facilities require probabilistic safety assessment (PSA). This article is intended to present the PSA method and to present the error tree method by which the probability of unavailability of the gravity reactor cooling system (GDCS) of the ESBWR power plant designed by GE Hitachi was determined. This work includes creatiion process of a damage tree and performing a quantitative analysis in SAPHIRE tool and estimating uncertainty using the Monte Carlo method. As a part of the work, it was shown that in the probability of failure of a single GDCS P LINE-A line, the most important element are the basic events related in particular to the operation of service valves.
Czasopismo
Rocznik
Tom
1
Strony
18--25
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Poland
Bibliografia
  • 1. Applications of probabilistic safety assessment (PSA) for nuclear power plants (International Atomic Energy Agency, Vienna, Austria, 2001).
  • 2. Bilbao, Y. & Leon, S. Natural Circulation Phenomena for Passive Safety Systems of Advanced Water Cooled Reactors, IAEA/ICTP Workshop on Nuclear Reactor Data for Advanced Reactor Technologies ICTP, Tieste, May 3-14 2010.
  • 3. Chmieliński, M. Inspection of Containers of the Explosives Materials in the Maritime Transport. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych 3. issn: 2450-1859 (2019).
  • 4. Fries, D. & Tietsch, W. AP1000 Nuclear Power Plant – Passive Safety System Actuation using Explosively Opening “Squib Valve” in booktitle International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century (Vienna, 2009).
  • 5. GE Hitachi, ESBWR Passive Safety Fact Sheet (2011).
  • 6. GE Hitachi, The ESBWR Plant General Description (2011).
  • 7. GE Nuclear Energy, ESBWR Design Description, NEDC-33084 – Document Transmittal for Pre-Application Review of ESBWR 2002.
  • 8. Hinds, D. & Maslak, C. Next-generation nuclear energy:The ESBWR (2006).
  • 9. Hoseyni, S. M., Maio], F. D. & Zio, E. Condition-based probabilistic safety assessment for maintenance decision making regarding a nuclear power plant steam generator undergoing multiple degradation mechanisms. Reliability Engineering and System Safety 191, 106583. issn: 0951-8320 (2019).
  • 10. Kaszko, A., Niewiński, G. & Stępień, M. Reliability Analysis Of ESBWR Gravity Driven Cooling System. Aparatura Badawcza i Dydaktyczna 3, 191–198 (2017).
  • 11. Lee, H., Kim, T. & Heo, G. Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture. Nuclear Engineering and Technology 49, 306 –312. issn: 1738-5733 (2017).
  • 12. Lim, J. et al. Assessment of passive safety system performance under gravity driven cooling system drain line break accident. Progress in Nuclear Energy 74, 136 –142. issn: 0149-1970 (2014).
  • 13. Multinational Design Evaluation Programme, The design and use of explosive-actuated (squib) valves in nuclear power plants 2010.
  • 14. Nasbaumer, O. Introduction to Probabilistic Safety Assessments (PSA) ().
  • 15. Oh, K. et al. Study on Quantification Method Based on Monte Carlo Sampling for Multiunit Probabilistic Safety Assessment Models. Nuclear Engineering and Technology 49, 710 –720. issn: 1738-5733 (2017).
  • 16. Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 2): Accident Progression, Containment Analysis and Estimation of Accident Source Terms: A Safety Practice Safety Series 50-P-8. isbn: 92-0-102195-X (International Atomic Energy Agency, Vienna, 1995).
  • 17. Smith, C., Wood, S. & O’Neal, D. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8: User’s Guide (Idaho National Laboratory, 2011).
  • 18. U.S. NRC, Inductry Averange Parameters Estimates, Component Reliability 2015.
  • 19. U.S. NRC, Industry-Averange Performance for Components And Initiating Events at U.S. Commercial Nuclear Power Plants (NUREG/CR-6928 2007.
  • 20. U.S. Nuclear Regulatory Commission, Reactor Safety Study, An assessment of accident risks in U.S. Commercial Power Plants 75/014 (NUREG).
  • 21. U.S. Nuclear Regulatory Commission, Risk Assessment Review Group Report NUREG/CR-0400.
  • 22. Ustawa z dnia 29 listopada 2000 r. – Prawo atomowe, Dz.U.2017.0.576
  • 23. Čepin, M. Application of shutdown probabilistic safety assessment. Reliability Engineering and System Safety 178, 147 –155. issn: 0951-8320 (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a993fe87-360a-4f43-9965-c18db32f8958
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.