PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work
Słowa kluczowe
Rocznik
Strony
471--495
Opis fizyczny
Bibliogr. 74 poz., rys., wykr., wzory
Twórcy
  • Research and Development Centre, Vel Tech University, Avadi, Chennai- 600062, Tamil Nadu, India
Bibliografia
  • [1] S. Vaidyanathan and C. Volos: Advances and Applications in Chaotic Systems. Berlin, Springer-Verlag, 2016.
  • [2] S. Vaidyanathan and C. Volos: Advances and Applications in Nonlinear Control Systems. Berlin, Springer-Verlag, 2016.
  • [3] D. Ruelle and F. Takens: On the nature of turbulence. Communications in Mathematical Physics, 20 (1971), 167-192.
  • [4] R. M. May: Limit cycles in predator-prey communities. Science, 177 (1972), 900-908.
  • [5] M. J. Feigenbaum: Universal behaviour in nonlinear systems. Physica D: Nonlinear Phenomena, 7 (1983), 16-39.
  • [6] E. N. Lorenz: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963), 130-141.
  • [7] O. E. Rössler: An equation for continuous chaos. Physics Letters A, 57 (1976), 397-398.
  • [8] A. Arneodo, P. Coulett and C. Tresser: Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79 (1981), 573-579.
  • [9] J. C. Sprott: Some simple chaotic flows. Physical Review E, 50 (1994), 647-650.
  • [10] G. Chen and T. Ueta: Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.
  • [11] J. Lü and G. Chen: A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12 (2002), 659-661.
  • [12] C. X. Liu, T. Liu, L. Liu and K. Liu: A new chaotic attractor. Chaos, Solitons and Fractals, 22 (2004), 1031-1038.
  • [13] G. Cai and Z. Tan: Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain Systems, 1 (2007), 235-240.
  • [14] G. Tigan and D. Opris: Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36 (2008), 1315-1319.
  • [15] D. Li: A three-scroll chaotic attractor. Physics Letters A, 372 (2008), 387-393.
  • [16] V. Sundarapandian and I. Pehlivan: Analysis, control, synchronization and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55 (2012), 1904-1915.
  • [17] V. Sundarapandian: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6 (2013), 45-52.
  • [18] S. Vaidyanathan: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79 (2013), 135-143.
  • [19] S. Vaidyanathan: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6 (2013), 53-65.
  • [20] S. Vaidyanathan: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84 (2014), 219-226.
  • [21] S. Vaidyanathan: Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22 (2014), 41-53.
  • [22] S. Vaidyanathan and K. Madhavan: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6 (2013), 121-137.
  • [23] S. Vaidyanathan: Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223 (2014), 1519-1529.
  • [24] S. Vaidyanathan, C. Volos, V. T. Pham, K. Madhavan and B. A. Idowu: Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24 (2014), 257-285.
  • [25] I. Pehlivan, I. M. Moroz and S. Vaidyanathan: Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333 (2014), 5077-5096.
  • [26] A. Akgul, I. Moroz, I. Pehlivan and S. Vaidyanathan: A new fourscroll chaotic attractor and its engineering applications. Optik, 127 (2016), 5491-Ű 5499.
  • [27] S. Jafari and J. C. Sprott: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57 (2013), 79-84.
  • [28] V. T. Pham, S. Jafari, C. Volos, S. Vaidyanathan and T. Kapitaniak: A chaotic system with infinite equilibria located on a piecewise linear curve. Optik, 127 (2016), 9111-9117.
  • [29] V. T. Pham, S. Vaidyanathan, C. Volos, S. Jafari and S. T. Kingni: A noequilibrium hyperchaotic system with a cubic nonlinear term. Optik, 127 (2016), 3259-3265.
  • [30] V. T. Pham, C. Volos, S. Jafari, S. Vaidyanathan, T. Kapitaniak and X. Wang: A chaotic system with different families of hidden attractors. International Journal of Bifurcation and Chaos, 26 (8), (2016), 1650139.
  • [31] V. T. Pham, S. Jafari, C. Volos, A. Giakoumis, S. Vaidyanathan and T. Kapitaniak: A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Transactions on Circuits and Systems-II: Express Briefs, 63 (9), (2016), 878-882.
  • [32] O. I. Tacha, C. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, S. Vaidyanathan and V. T. Pham: Analysis,adaptive control and circuit simulation of a novel nonlinear finance system. Applied Mathematics and Computation, 276 (2016), 200-217.
  • [33] V. T. Pham, C. K. Volos and S. Vaidyanathan: Multi-scroll chaotic oscillator based on a first-order delay differential equation. Studies in Computational Intelligence, 581 (2015), 59-72.
  • [34] S. Vaidyanathan: Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. International Journal of PharmTech Research, 8 (6), (2015), 106-116.
  • [35] P. Gaspard: Microscopic chaos and chemical reactions. Physica A: Statistical Mechanics and its Applications, 263 (1999), 315-328.
  • [36] Q. S. Li and R. Zhu: Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction. Chaos, Solitons & Fractals, 19 (2004), 195-201.
  • [37] M. Kyriazis: Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26 (1991), 569-572.
  • [38] E. Carlen, R. Chatelin, P. Degond and B. Wennberg: Kinetic hierarchy and propagation of chaos in biological swarm models. Physica D: Nonlinear Phenomena, 260 (2013), 90-111.
  • [39] I. Suarez: Mastering chaos in ecology. Ecological Modelling, 117 (1999), 305-314.
  • [40] J. C. Sprott, J. A. Vano, J. C. Wildenberg, M. B. Anderson and J. K. Noel: Coexistence and chaos in complex ecologies. Physics Letters A, 335 (2005), 207-212.
  • [41] S. Vaidyanathan: Global chaos control of 3-cells cellular neural network attractor via integral sliding mode control. International Journal of PharmTech Research, 8 (8), (2015), 211-221.
  • [42] S. Vaidyanathan: Global chaos synchronization of 3-cells cellular neural network attractors via integral sliding mode control. International Journal of PharmTech Research, 8 (8), (2015), 118-130.
  • [43] S. Vaidyanathan: Global chaos regulation of a symmetric nonlinear gyro system via integral sliding mode control. International Journal of ChemTech Research, 9 (5), (2016), 462-469.
  • [44] S. Vaidyanathan: Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. International Journal of ChemTech Research, 8 (6), (2015), 818-827.
  • [45] S. Vaidyanathan: Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. International Journal of ChemTech Research, 8 (6), (2015), 795-803.
  • [46] C. K. Volos, D. Prousalis, I. M. Kyprianidis, I. Stouboulos, S. Vaidyanathan and V. T. Pham: Synchronization and anti-synchronization of coupled Hindmarsh-Rose neuron models. International Journal of Control Theory and Applications, 9 (1), (2016), 101-114.
  • [47] S. Vaidyanathan: Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. International Journal of PharmTech Research, 9 (4), (2016), 413-425.
  • [48] S. Vaidyanathan: Adaptive synchronization of the identical FitzHugh- Nagumo chaotic neuron models. International Journal of PharmTech Research, 8 (6), (2015), 167-177.
  • [49] S. Vaidyanathan, C. K. Volos, K. Rajagopolal, I. M. Kyprianidis and I. N. Stouboulos: Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. Journal of Engineering Science and Technology Review, 8 (2), (2015), 74-82.
  • [50] C. K. Volos, V. T. Pham, S. Vaidyanathan, I. M. Kyprianidis and I. N. Stouboulos: Synchronization phenomena in coupled Colpitts circuits. Journal of Engineering Science and Technology Review, 8 (2), (2015), 142-151.
  • [51] J. C. Sprott: Elegant Chaos. Singapore, World Scientific, 2010
  • [52] C. Li, X. Liao and K. W. Wong: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals, 23 (2005), 183-193.
  • [53] N. Smaoui, A. Karouma and M. Zribi: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3279-3293.
  • [54] X. J. Wu, H. Wang and H. T. Lu: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Analysis: Real World Applications, 12 (2011), 1288-1299.
  • [55] T. I. Chien and T. L. Liao: Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons & Fractals, 24 (2005), 241-245.
  • [56] B. Zhang, M. Chen and D. Zhou: Chaotic secure communication based on particle filtering. Chaos, Solitons & Fractals, 30 (2006), 1273-1280.
  • [57] X. Wu, C. Bai and H. Kan: A new color image cryptosystem via hyperchaos synchronization. Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 1884-1897.
  • [58] Q. Zhang, L. Guo and X. Wei: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik - International Journal for Light and Electron Optics, 124 (2013), 3596-3600.
  • [59] G. YE and J. ZHOU: A block chaotic image encryption scheme based on selfadaptive modelling. Applied Soft Computing, 22 (2014), 351-357.
  • [60] H. Liu, X. Wang and A. Kadir: Color image encryption using Choquet fuzzy integral and hyper chaotic system. Optik - International Journal for Light and Electron Optics, 124 (2013), 3257-3533.
  • [61] A. Buscarino, L. Fortuna and M. Frasca: Experimental robust synchronization of hyperchaotic circuits. Physica D: Nonlinear Phenomena, 238 (2009), 1917-1922.
  • [62] N. Yujun, W. Xingyuan, W. Mingjun and Z. Huaguang: A new hyperchaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 3518-3524.
  • [63] X. Wei, F. Yunfei and L. Qiang: A novel four-wing hyper-chaotic system and its circuit implementation. Procedia Engineering, 29 (2012), 1264-1269.
  • [64] P. Zhou and K. Huang: A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 2005-2011.
  • [65] O. E. Rössler: An equation for hyperchaos. Physics Letters A, 71 (1979), 155-157.
  • [66] Q. Jia: Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (2007), 217-222.
  • [67] A. Chen, J. Lu, J. Lü and S. Yu: Generating hyperchaotic Lü attractor via state feedback control. Physica A, 364 (2006), 103-110.
  • [68] X. Li: Modified projective synchronization of a new hyperchaotic system via nonlinear control. Communications in Theoretical Physics, 52 (2009), 274-278.
  • [69] J. Wang and Z. Chen: A novel hyperchaotic system and its complex dynamics. International Journal of Bifurcation and Chaos, 18 (2008), 3309-3324.
  • [70] D. Ghosh and S. Bhattacharya: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dynamics, 61 (2010), 11-21.
  • [71] S. Vaidyanathan, C. Volos, V. T. Pham and K. Madhavan: Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences, 25 (1), (2015), 135-158.
  • [72] S. Vaidyanathan: Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method. Archives of Control Sciences, 26 (3), (2016), 311-318.
  • [73] S. Vaidyanathan: Adaptive controller and synchronizer design for the Qi- Chen chaotic system. Lecture Notes of the Institute for Computer Sciences, Social- Informatics and Telecommunications Engineering, 85 (2012), 124-133.
  • [74] S. Vaidyanathan and S. Rasappan: Hybrid synchronization of hyperchaotic Qi and Lü systems by nonlinear control. Communications in Computer and Information Science, 131 (2011), 585-593.
  • [75] H. K. Khalil: Nonlinear Systems. Prentice Hall, New Jersey, 1996
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a991f370-a852-4a79-b690-df9dd3eb00cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.