PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fixed switching frequency model predictive control and passivity based control for DC-DC converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The DC-DC converter represents a crucial component in renewable energy sources. The stability and dynamic capability enhancement of the DC/DC converter have emerged as a significant research topic in the current era. Model predictive control (MPC) is particularly prevalent due to its high dynamic response speed, simplicity of the controller design, and capacity for multi-objective optimization. However, the traditional finite control set model predictive control (FCS-MPC) method suffers as a result of variable switching frequency and vast computing. To improve the dynamic performance of the converter, a novel nonlinear control strategy named fixed switching frequency MPC and passivity-based control (PBC), named FSF-PBMPC, are both proposed. They could allow to achieve fixed switching frequency and to enhance the system’s dynamic response speed. Firstly, the Euler-Lagrange (EL) model of the boost converter is established. Secondly, the relationship between duty cycle and MPC is established. Ultimately, the output voltage of PBC is incorporated into the cost function of the FCS-MPC. The characteristics of PBC power shaping and damping injection can enhance the system’s immunity to interference, improve the system’s dynamic response speed, and thus reinforce the system’s stability. Then, depending on MATLAB, the simulation results can prove that the proposed strategy has the effect we expected.
Rocznik
Strony
art. no. e152209
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • School of Automation, Beijing Information Science & Technology University, Beijing, China
autor
  • School of Automation, Beijing Information Science & Technology University, Beijing, China
  • State Grid Economic and Technological Research Institute Co., Ltd, Beijing, China
  • State Grid Economic and Technological Research Institute Co., Ltd, Beijing, China
  • State Grid Corporation Gansu, Power Grid Construction Division, Gansu, China
Bibliografia
  • [1] T. Dragičević, X. Lu, J.C. Vasquez, and J.M. Guerrero, “DC Microgrids-Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–489, 2016, doi: 10.1109/TPEL.2015.2478859.
  • [2] Z. Karami, Q. Shafiee, S. Sahoo, M. Yaribeygi, H. Bevrani, and T. Dragicevic, “Hybrid Model Predictive Control of DC–DC Boost Converters With Constant Power Load,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1347–1356, 2021, doi: 10.1109/TEC.2020.3047754.
  • [3] A. Reatti, F. Corti, A. Tesi, A. Torlai, and M.K. Kazimierczuk, “Nonlinear Exact Analysis and Solution of Power Stage of DC-DC PWM Boost Converter,” in 2019 IEEE Int. Symp. Circuits and Syst. (ISCAS), 2019, pp. 1–5, doi: 10.1109/ISCAS.2019.8702549.
  • [4] Z. Junzi, L. Ye, Y. Yuanyuan, H. Fuhua, and Z. Xiaoqi, “A Novel Adaptive Control Strategy for Transient Performance Improvement of DC/DC Converter in Distributed Power Generation Systems,” in 2022 IEEE/IAS Ind. and Commercial Power Syst. Asia (I&CPS Asia), 2022, pp. 570–576, doi: 10.1109/ICPSAsia55496.2022.9949908.
  • [5] P. Karamanakos, T. Geyer, and S. Manias, “Direct Voltage Control of DC–DC Boost Converters Using Enumeration-Based Model Predictive Control,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 968–978, 2014, doi: 10.1109/TPEL.2013.2256370.
  • [6] L. Karunaratne, N.R. Chaudhuri, A. Yogarathnam, and M. Yue, “Nonlinear Backstepping Control of Grid-Forming Converters in Presence of Grid-Following Converters and Synchronous Generators,” IEEE Trans. Power Syst., vol. 39, no. 1, pp. 1948–1964, 2024, doi: 10.1109/TPWRS.2023.3272528.
  • [7] J.H. Urrea-Quintero, N. Muñoz-Galeano, and D.A. Cuervo-Sanchez, “A procedure for power electronic converters design with controllability verification based on the nonlinear dynamical model,” in 2017 IEEE Workshop Power Electron. and Power Qual. Appl. (PEPQA), 2019, pp. 1–6, doi: 10.18178/ijeee.5.3.207-212.
  • [8] F. Wang, G. Lin, and Y. He, “Passivity-Based Model Predictive Control of Three-Level Inverter-Fed Induction Motor,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1984–1993, 2021, doi: 10.1109/TPEL.2020.3008915.
  • [9] L. Qiu, “Passivity-Based Cascade-Free Finite-Set Model Predictive Control for Nested Neutral Point-Clamped Converters,” IEEE Access, vol. 8, pp. 200209–200218, 2020, doi: 10.1109/ACCESS.2020.3033272.
  • [10] Z. Yu, J. Zeng, J. Liu, and F. Luo, “Terminal sliding mode control for dual active bridge dc-dc converter with structure of voltage and current double closed loop,” in 2018 Australian & New Zealand Control Conf. (ANZCC), 2018, pp. 11–15, doi: 10.1109/ANZCC.2018.8606608.
  • [11] H. Sira-Ramirez, G. Escobar, and R. Ortega, “On passivity-based sliding mode control of switched DC-to-DC power converters,” in Proc. of 35th IEEE Conf. Decision and Control, 1996, pp. 2525–2526, doi: 10.1109/CDC.1996.573474.
  • [12] F. Tlili and F. Bacha, “Fuzzy Logic Direct Power Control of a Bidirectional Three-Phase ACIDC Converter,” in 2020 20th Int. Conf. Sciences and Techn. Autom. Control and Comput. Eng. (STA), 2020, pp. 201–206, doi: 10.1109/STA50679.2020.9329316.
  • [13] A. Ghosh and S. Banerjee, “A Comparison between Classical and Advanced Controllers for a Boost Converter,” in 2018 IEEE Int. Conf. Power Electron., Drives and Energy Syst. (PEDES), 2018, pp. 1–6, doi: 10.1109/PEDES.2018.8707911.
  • [14] J. Liu, W. Ming, and F. Gao, “A new control strategy for improving performance of boost DC/DC converter based on input-output feedback linearization,” in 2010 8th World Congr. Intel. Control and Autom., 2010, pp. 2439–2444, doi: 10.1109/WCICA.2010.5554675.
  • [15] B. Taheri and M. Sedaghat, “A new general controller for DC-DC converters based on SMC methods,” in 2018 6th Int. Istanbul Smart Grids and Cities Congr. and Fair (ICSG), 2018, pp. 49–53, doi: 10.1109/SGCF.2018.8408940.
  • [16] N. Vafamand, S. Yousefizadeh, M.H. Khooban, J.D. Bendtsen, and T. Dragičević, “Adaptive TS Fuzzy-Based MPC for DC Microgrids With Dynamic CPLs: Nonlinear Power Observer Approach,” IEEE Syst. J., vol. 13, no. 3, pp. 3203–3210, 2019, doi: 10.1109/JSYST.2018.2880135.
  • [17] J. Zeng, Z. Zhang, and W. Qiao, “An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2314–2322, 2014, doi: 10.1109/TIA.2013.2290872.
  • [18] L. Gupta, S. Bhandari, and Deepika, “Modelling of Passivity based Controller for Buck Boost Converter,” in 2022 2𝑛𝑑 Int. Conf. Next Gener. Intell. Syst. (ICNGIS), 2022, pp. 1–6, doi: 10.1109/ICNGIS54955.2022.10079798.
  • [19] W. Ao and J. Chen, “Model Predictive Control of Four-Switch Buck-Boost Converter for Pulse Power Loads,” in 2021 IEEE Int. Conf. Predictive Control Elect. Drives and Power Electron. (PRECEDE), 2021, pp. 904–908, doi: 10.1109/PRECEDE51386.2021.9680981.
  • [20] S. Ni, Z. Zheng, L. Peng, and Y. Li, “A Hybrid PI-FOC and CCS-MPC Method for Multiple Harmonic Current Suppression in Multiphase Machines,” in 2023 IEEE Int. Conf. Predictive Control Elect. Drives and Power Electron. (PRECEDE), 2023, pp. 1–7, doi: 10.1109/PRECEDE57319.2023.10174487.
  • [21] A. Choubey, P.K. Padhy and S.K. Jain, “Model Predictive Control for DC-DC Boost converter,” in 2021 IEEE Conf. Energy Convers. (CENCON), 2021, pp. 58–63, doi: 10.1109/CENCON51869.2021.9627268.
  • [22] Y. Song, “Research on Control Strategy of Three-level PV Grid-Connected Inverter Based on FCS-MPC,” in 2023 4th Int. Conf. Adv. Elect. and Energy Syst. (AEES), 2023, pp. 39–44, doi: 10.1109/AEES59800.2023.10468919.
  • [23] Y. Li, S. Sahoo, T. Dragičević, Y. Zhang, and F. Blaabjerg, “Stability-Oriented Design of Model Predictive Control for DC/DC Boost Converter,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 922–932, 2024, doi: 10.1109/TIE.2023.3247785.
  • [24] P. Karamanakos and T. Geyer, “Guidelines for the Design of Finite Control Set Model Predictive Controllers,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7434–7450, 2020, doi: 10.1109/TPEL.2019.2954357.
  • [25] M.S. Mousavi, S.A. Davari, V. Nekoukar, C. Garcia, and J. Rodriguez, “A Robust Torque and Flux Prediction Model by a Modified Disturbance Rejection Method for Finite-Set Model-Predictive Control of Induction Motor,” IEEE Trans. on Power Electron., vol. 36, no. 8, pp. 9322–9333, 2021, doi: 10.1109/TPEL.2021.3054242.
  • [26] X. Zhang, H. Zhang, and K. Yan, “Hybrid Four-segment-mode Model Predictive Control for Open-winding PMSM Drives,” IEEE Trans. Transp. Electrific., vol. 10, no. 2, pp. 4322–4333, 2024, doi: 10.1109/TTE.2023.3308570.
  • [27] N. Guler, S. Biricik, S. Bayhan, and H. Komurcugil, “Model Predictive Control of DC–DC SEPIC Converters With Autotuning Weighting Factor,” IEEE Trans. Indus. Electron., vol. 68, no. 10, pp. 9433–9443, Oct. 2021, doi: 10.1109/TIE.2020.3026301.
  • [28] Y. Li, T. Dragičević, S. Sahoo, Y. Zhang, and F. Blaabjerg, “An Improved Model Predictive Control for DC-DC Boost Converter,” in 2022 IEEE 13th Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG), 2022, pp. 1–6, doi: 10.1109/PEDG54999.2022.9923104.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a98f68ea-df6d-4b30-9c22-cf869e2d1ef6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.