PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory tests of two-dimensional wavelet trigger in radio detection of cosmic rays

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems
Języki publikacji
EN
Abstrakty
EN
The origin of ultrahigh-energy cosmic rays (UHECRs)(E $\ge$ 10$^{17}$ eV) is a fundamental question of astroparticle physics. The induced shower of secondary particles in the atmosphere of the Earth provides essential information on the cosmic ray itself: arrival direction, primary energy, and mass. In the air shower many electrons and positrons form a pancake-shaped particle front with a typical thickness less than 1 m close to the shower axis to more than 10 m far from the shower axis The geomagnetic field induces a drift velocity in these particles which is perpendicular to the direction of the initial cosmic ray. The generated current is a source of coherent emission of electromagnetic waves at wavelengths larger than the size of the dimension of the charge cloud i.e., for radio frequencies in the range of 30-300 MHz.
Słowa kluczowe
Rocznik
Tom
Strony
115--123
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • University of Łódź, Department of Physics and Applied Informatics, ul. Pomorska 149, 90-236 Łódź, Poland
  • Łódź University of Technology, Center of Mathematics and Physics, ul. Zeromskiego 116, 90-024 Łódź, Poland
Bibliografia
  • 1. Pierre Auger Collaboration, A. Aab et al., The Pierre Auger Cos mic Ray Observatory, Nucl. Instrum. Meth. A 798 (2015) 172, DOI: 10.1016/j.nima.2015.06.058
  • 2. H.R. Allan, Radio Emission From Extensive Air Showers, Progress in Elementary Particle and Cosmic Ray Physics, vol. 10 (1971) 171.
  • 3. H. Falcke, P.W. Gorham, Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope, Astropart. Phys. 19 (2003) 477, DOI: 10.1016/S0927-6505(02)00245-1
  • 4. Pierre Auger Collaboration, A. Aab et al., Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth, Phys. Rev. D90 Issue 1 (2014) 012012, DOI: 10.1103/Phys. RevD.90.012012
  • 5. Pierre Auger Collaboration, S. Acounis et al., Results of a self-triggered prototype system at the Pierre Auger Observatory for radio-detection of air showers induced by cosmic rays, JINST 7 (2012) P11023, DOI: 10.1088/1748-0221/7/11/P11023
  • 6. Pierre Auger Collaboration, A. Aab et al., Probing the radio emission from air showers with polarization measurements, Phys. Rev. D89 (2014) 052002, DOI: 10.1103/PhysRevD.89.052002
  • 7. S. Fliescher for the Pierre Auger Collaboration, Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory, Nucl. Instrum. Meth. A662 (2012) S124, DOI: 10.1016/j.nima.2010.11.045
  • 8. R. Dallier for the Pierre Auger Collaboration, Measuring cosmic ray radio signals at the Pierre Auger Observatory, Nucl. Instrum. Meth. A630 (2011) 218, DOI: 10.1016/j.nima.2010.06.069
  • 9. T. Huege for the Pierre Auger Collaboration, Radio detection of cosmic rays in the Pierre Auger Observatory, Nucl. Instrum. Meth. A617 (2010) 484, DOI: 10.1016/j.nima.2009.10.012
  • 10. Pierre Auger Collaboration, J. Abraham et al., The fluorescence detector of the Pierre Auger Observatory, Nucl. Instrum. Meth. A620 (2010) 227, DOI: 10.1016/j.nima.2010.04.023
  • 11. Pierre Auger Collaboration, P. Abreu et al., Antennas for the Detection of Radio Emission Pulses from Cosmic-Ray induced Air Showers at the Pierre Auger Observatory, JINST 7 (2012) P11011, DOI: 10.1088/1748-0221/7/10/P10011
  • 12. I. Daubechies, The wavelet transform time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990) 961.
  • 13. Z. Szadkowski, An Optimization of the FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays, IEEE Trans. on Nucl. Science 62 Issue 3 (2015) 993, DOI: 10.1109/TNS.2015.2422713
  • 14. C. Torrence, G.P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society 79 (1998) 61.
  • 15. Z. Szadkowski, Front-End Board with Cyclone V as a Test High Resolution Platform for the Auger_Beyond_2015 Front End Electronics, IEEE Trans. on Nucl. Science 62 Issue 3 (2015) 985, DOI: 10.1109/TNS.2015.2426059
  • 16. Z. Szadkowski, A. Szadkowska, FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays, Braz. J Phys 44 (2014) 805, DOI: 10.1007/s13538-014-0243-5
  • 17. Z. Szadkowski, 16-point discrete Fourier transform based on the Radix-2 FFT algorithm implemented into cyclone FPGA as the UHECR trigger for horizontal air showers in the Pierre Auger Observatory, Nucl. Instrum. Meth. A 560, Issue 2 (2006) 309, DOI: 10.1016/j.nima.2006.01.045
  • 18. Pierre Auger Collaboration„ P. Abreu et al., Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory, JINST 7 (2012) P10011.
  • 19. [Z. Szadkowski, First results of High-Resolution Front End Electronics for Water Cherenkov Air Shower Detectors equipped with Cyclone V FPGA, IEEE Trans. on Nucl. Science 63 Issue 3 (2016) 1446, DOI: 10.1109/TNS.2016.2567320
  • 20. Pierre Auger Collaboration, J. Abraham et al., Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory, Astropart. Phys. 32 (2009) 88, DOI: 10.1016/j.astropartphys.2009.06.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a98b4cc4-ccfd-4d07-8b2b-87af712867b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.