PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulative and bioindicative role of fungi in the environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bioakumulacyjna i bioindykacyjna rola grzybów w środowisku
Konferencja
ECOpole’14 Conference (15-17.10.2014, Jarnoltowek, Poland)
Języki publikacji
EN
Abstrakty
EN
Mycelial construction of mushrooms is considered as a good biomass for heavy metals binding as well as lots of elements, including toxic and radioactive ones. Between various fungi known to bind heavy metals, mycelium of Pleurotus spp. can be used in Cd indication and accumulation, by means of fungal biomass. In this work possible role of Pleurotus ostreatus in accumulation of radionuclides is presented. This is important because this fungus is one of broadly cultivated mushrooms, and it can grow as saprobic organism on various substrates. Naturally occurring fruiting bodies of P. ostreatus were used in studies as a potential marker of atmospheric radioactive pollution. The samples of fruiting bodies in different age (young, mature and old) were collected in the center of Opole. Measurements of the gamma radionuclides activity concentration in dried samples were carried out by means of a gamma-spectrometer with a germanium detector HPGe (Canberra) of high resolution. Potassium concentration in fruiting bodies was similar in each sample, though it was the lowest in the young specimen. Activity concentration of Cs-137 was also related with the age of the mushroom. The biggest concentration was determined in old specimen, while in the young and mature ones it was similar. In the mature and old mushrooms activity concentration of Pb-210 was lower than minimum detectable activity. Pb-212 was determined only in fruiting bodies of old specimen
PL
Grzybnia, szczególnie grzybów wielkoowocnikowych, dzięki zdolności do akumulowania metali ciężkich stanowi potencjalne źródło informacji o zanieczyszczeniu środowiska. Wśród nich należy wymienić boczniaka (Pleurotus osteratus), grzyba zarówno uprawnego, jak i występującego naturalnie. W pracy wykonano analizę zdolności bioindykacyjnych i biokumulacyjnych tego gatunku w stosunku do izotopów gamma-promieniotwórczych. Próbki P. osteratus w różnym wieku (młode, dojrzałe, starzejące) zebrano w naturalnym stanowisku, w centrum Opola. Aktywności izotopu K-40 były podobne we wszystkich badanych próbkach, przy czym najniższa koncentracja tego izotopu została stwierdzona w najmłodszych owocnikach. Izotop Cs-137 najliczniej występował w najstarszych owocnikach. Radioizotop Pb-210 znaleziono w młodych owocnikach, a izotop Pb-212 stwierdzono w starych owocnikach
Rocznik
Strony
117--123
Opis fizyczny
Bibliogr. 19 poz., fot., tab., rys.
Twórcy
  • Independent Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 59
  • Independent Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 59
autor
  • Independent Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 59
  • Independent Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 59
autor
  • Independent Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 59
Bibliografia
  • [1] Falandysz J, Brzostowski A, Nosewicz M, Danisiewicz D, Frankowska A, Apanasewicz D, et al. Rtęć w grzybach jadalnych z terenu Trójmiejskiego Parku Krajobrazowego. Bromat Chem Toksykol. 2000;2:177-182.
  • [2] Falandysz J, Lipka K, Gucia M, Kawano M, Strumnik K, Kannan K. Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environ Inter. 2002;28:421-427. DOI: 10.1016/S0160-4120(02)00067-3.
  • [3] Upadhyay R, Singh ChM. Production of Edible Mushrooms. In: Hofrichter M, editor. Industrial Applications, 2nd Edition. The Mycota X. Berlin Heidelberg: Springer-Verlag; 2010.
  • [4] Yildiz A, Karakaplan M, Aydin F. Studies on Pleurotus ostreatus (Jacq. ex Fr.) Kum. var. salignus (Pers. ex Fr.) Konr. et Maubl.: cultivation, proximate composition, organic and mineral composition of carpophores. Food Chem. 1998;61(1/2):127-130. DOI: 10.1016/S0308-8146(97)00066-6.
  • [5] Shah H, Khalil AI, Jabeen S. Nutritional composition and protein quality of Pleurotus mushroom. Sarhad J Agric. 1997;13(6):621-626.
  • [6] Vetter J. Mineral elements in the important cultivated mushrooms Agaricus bisporus and Pleurotus osteratus. Food Chem. 1994;50(3):277-279. DOI: 10.1016/0308-8146(94)90132-5.
  • [7] Watanabe T, Tsuchihasi N, Takai Y, Tanaka K, Suzuki A. Effects of ozone exposure during cultivation of oyster mushroom (Pleurotus ostreatus) on chemical components of the fruit bodies. J Japan Soc Food Sci Technol. 1994;41(10):705-708.
  • [8] Zimmermann M, Wolf K. Biosorption of Metals. In: M. Hofrichter, editor. Industrial Applications, 2nd Edition. The Mycota X. Berlin Heidelberg: Springer-Verlag; 2010.
  • [9] Gadd G.M. Interaction of fungi with toxic metals. New Phytol. 1993;124:25-60.
  • [10] Olumuyiwa S, Oluwatoyin F, Olanrewaja OA, Steve RA. Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. Inter J Food Sci Technol. 2007;43:24-29. DOI: 10.1111/j.1365-2621.2006.01375.x.
  • [11] Uzun Y, Genccelep H, Kaya A, Akcay ME. The mineral contents of some wild edible mushrooms. Ekoloji. 2011;20(80):6-12.
  • [12] Yilmaz F, Isiloglu M, Merdivan M. Heavy metal levels in some macrofungi. Turk J Bot. 2003;27:45-56.
  • [13] Godyń P, Dołhańczuk-Śródka A, Ziembik Z, Moliszewska E. Estimation of the commited radiation dose resulting from gamma radionuclides ingested with food. J Radioanal Nuclear Chem. 2014;299(3):1359-1364. DOI: 10.1007/s10967-014-2926-3.
  • [14] United Nations. 2000. Report, Annex C: Exposures to the public from man-made sources of radiation. http://www.unscear.org/docs/ reports/annexc.pdf.
  • [15] Akahane K, Yonai S, Fukuda S, Miyahara N, Yasuda H, Iwaoka K, et al. The Fukushima Nuclear Power Plant accident and exposures in the environment. Environmentalist. 2012;32(2):136-143. DOI: 10.1007/s10669-011-9381-2.
  • [16] Aleksakhin RM, Sanzharova NI, Fesenko SV. Radioecology and the accident at the Chernobyl nuclear power plant. Atomic Energy. 2006;100(4):257-263.
  • [17] United Nations. 2008. UNSCEAR 2008 Report Vol. I. Sources of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, with scientific annexes. Annex D. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf.
  • [18] Bishnoi NR, Garima A. Fungus - an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res. 2005;64:93-100.
  • [19] Kalač P, Svoboda L, Havlíčková B. Contents of cadmium and mercury in edible mushrooms. J Appl Biomed. 2004;2:15-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a988e8e4-2fdb-4619-85d9-38e90b1347bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.