Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work focuses on the influence of temperature distribution in a shell mould during investment casting of thin wall parts on macrostructure, chemical composition of microstructural constituents and γ/γ′ misfit parameter. A reduction of production costs is associated with the optimization of precision casting technology of aircraft engine critical parts, including control of the solidification front in thin-walled castings of nickel superalloys. Appropriate lost-wax casting parameters lead to the creation of coarse grained structure, desired for high-temperature service applications. As a result of non-equilibrium solidification, substantially large chemical inhomogeneities in the dendrite core and interdendritic spaces are formed. Interdendritic spaces are occupied by constituents formed as a consequence of segregation of alloying elements, namely eutectic islands γ/γ′, borides, carbides, and an intermetallic compound of Ni and Zr. Dendrite cores consist of cubic-shaped γ′ precipitates surrounded by Ni-rich γ channels. Low lattice misfit influences cubic morphology of γ′ precipitates, which is favourable for jet engine application because it can guarantee good creep resistance.
Czasopismo
Rocznik
Tom
Strony
1441--1450
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Mickiewicza 30, 30-059 Cracow, Poland
autor
- Consolidated Precision Products, Investment Casting Division CPP-Poland, ul. Hetmanska 120, 35-078 Rzeszow, Poland
Bibliografia
- [1] E. Benini, Advances in Gas Turbine Technology, Intech, 2011, http://dx.doi.org/10.5772/664.
- [2] Ł. Rakoczy, et al., Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component, Adv. Mater. Sci. 17 (2) (2017) 55–63.
- [3] A. Szczotok, J. Pietraszek, N. Radek, Metallographic study and repeatability analysis of g0 phase precipitates in cored thinwalled castings made from IN713C superalloy, Arch. Metall. Mater. 62 (2) (2017) 595–601.
- [4] T. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propuls. Power 22 (2) (2006) 361–374.
- [5] C.H. Konrad, et al., Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings, J.Mater. Prop. Technol. 211 (2011) 181–186.
- [6] Y.W. Dong, et al., Modelling of shrinkage during investment casting of thin-walled hollow turbine blades, J. Mater. Process. Technol. 244 (2017) 190–203.
- [7] J. Coakley, et al., Lattice strain evolution and load partitioning during creep of a Ni-based superalloy single crystal with rafted g0 microstructure, Acta Mater. 135 (2017) 77–87.
- [8] ASTM E139-11 Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials.
- [9] L. Qin, et al., A design of non-uniform thickness mould for controlling temperature gradient and S/L interface shape In directionally solidified superalloy blade, Mater. Des. 116 (2017) 565–576.
- [10] M. Lachowicz, et al., Microstructure transformations and cracking in the matrix of g–g0 superalloy Inconel 713C melted with electron beam, Mater. Sci. Eng. A 479 (2008) 269–276.
- [11] H. Matysiak, et al., The microstructure degradation of the IN713C nickel-based superalloy after stress rupture tests, J. Mater. Eng. Perform. 23 (9) (2014) 3305–3313.
- [12] H. Matysiak, et al., The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy, J. Miner. 68 (1) (2016) 185–197.
- [13] D. Szeliga, et al., Investigation of casting–ceramic shell mold interface thermal resistance during solidification process of nickel based superalloy, Exp. Therm. Fluid Sci. 87 (2017) 149–160.
- [14] L. Cao, et al., Formation of the surface eutectic of a Ni-based single crystal superalloy, J. Mater. Sci. Technol. 33 (2017) 347–351.
- [15] S. Hedge, R. Kearsey, J. Beddoes, Designing homogenization – solution heat treatments for single crystal superalloys, Mater. Sci. Eng. A 527 (2011) 5528–5538.
- [16] B. Du, et al., M5B3 boride at the grain boundary of a nickelbased superalloy, J. Mater. Sci. Technol. 32 (2016) 265–270.
- [17] A. Shulga, Boron and carbon behavior in the cast Ni-base superalloy EP962, J. Alloys Compd. 436 (2007) 155–160.
- [18] B. Zhang, et al., Precipitation and evolution of boride In diffusion affected zone of TLP joint of Mar-M247 superalloy, J. Alloys Compd. 695 (2017) 3202–3210.
- [19] J. Wei, et al., The effects of borides on the mechanical properties of TLPB repaired Inconel 738 superalloy, Metall. Trans. A 48 (10) (2017) 4622–4631.
- [20] S. Seo, et al., Eta phase and boride formation in directionally solidified Ni-base superalloy IN792 + Hf, Metall. Trans. A 38 (4) (2007) 883–893.
- [21] A. Chamanfar, et al., Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades, Mater. Sci. Eng. A 642 (2015) 230–240.
- [22] X.B. Hu, et al., The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys, Sci. Rep. 4 (2014) 1–9, Article 7367.
- [23] P. Franke, D. Neuschütz, Binary Systems. Part 4: Binary Systems From Mn–Mo to Y–Zr. Landolt-Börnstein – Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vol. 19B4, Springer, Berlin, Heidelberg, 2006.
- [24] H. Motejadded, et al., Dissolution mechanism of Zr rich structure in a Ni3Al base alloy, J. Mater. Sci. Technol. 27 (2011) 885–992.
- [25] S. Babu, et al., Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds, in: International Field Emission Society IFES'96 Proceedings of the 43rd International Field Emission Symposium, 1996.
- [26] F. Masoumi, et al., Kinetics and mechanisms of g0 reprecipitation in a Ni-based superalloy, Sci. Rep. 6 (28650) (2016) 1–16.
- [27] L. Nguyen, et al., Quantification of rafting of g0 precipitates In Ni-based superalloys, Acta Mater. 103 (2016) 322–333.
- [28] V. Caccuri, et al., g0-Rafting mechanisms under complex mechanical stress state in Ni-based single crystalline superalloys, Mater. Des. 131 (2017) 487–497.
- [29] P. Nörtershäuser, et al., The effect of cast microstructure and crystallography on rafting, dislocation plasticity and creepanisotropy of single crystal Ni-base superalloys, Mater. Sci. Eng. A 626 (2015) 306–312.
- [30] C. Li, et al., Microstructure and mechanical properties of a Nibased superalloy after heat treatment in a steady magnetic field, J. Mater. Process. Technol. 246 (2017) 176–184.
- [31] M. Azadi, et al., Effects of solutioning and ageing treatments on properties of Inconel 713C nickel-based superalloy under creep loading, Mater. Sci. Eng. A 711 (2018) 95–204.
- [32] M. Li, et al., Creep deformation mechanisms and CPFE modelling of a nickel-base superalloy, Mater. Sci. Eng. A 718 (2018) 147–156.
- [33] R. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a986a358-8af6-462c-993d-509e1ec52706