PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On tangential approximations of the solution set of set-valued inclusions

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the problem of estimating the contingent cone to the solution set associated with certain set-valued inclusions is addressed by variational analysis methods and tools. As a main result, inner (resp. outer) approximations, which are expressed in terms of outer (resp. inner) prederivatives of the set-valued term appearing in the inclusion problem, are provided. For the analysis of inner approximations, the evidence arises that the metric increase property for set-valued mappings turns out to play a crucial role. Some of the results obtained in this context are then exploited for formulating necessary optimality conditions for constrained problems, whose feasible region is defined by a set-valued inclusion.
Wydawca
Rocznik
Strony
11--33
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Department of Mathematics and Applications, Università di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
Bibliografia
  • [1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed., Springer, Berlin, 2006.
  • [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Mod. Birkhäuser Class., Birkhäuser, Boston, 2009.
  • [3] D. Azé and J.-N. Corvellec, Nonlinear local error bounds via a change of metric, J. Fixed Point Theory Appl. 16 (2014), no. 1-2, 351-372.
  • [4] D. Azé, J.-N. Corvellec and R. E. Lucchetti, Variational pairs and applications to stability in nonsmooth analysis, Nonlinear Anal. 49 (2002), no. 5, 643-670.
  • [5] H. T. Banks and M. Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl. 29 (1970), 246-272.
  • [6] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books Math./Ouvrages Math. SMC 3, Springer, New York, 2000.
  • [7] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, CMS Books Math./Ouvrages Math. SMC 20, Springer, New York, 2005.
  • [8] G. Bouligand, Sur les surfaces dépourvues de points hyperlimites, Ann. Soc. Polon. Math. 9 (1930), 32-41.
  • [9] M. Castellani, Error bounds for set-valued maps, Generalized Convexity and Optimization for Economic and Financial Decisions (Verona 1998), Pitagora, Bologna (1999), 121-135.
  • [10] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 68 (1980), no. 3, 180-187.
  • [11] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Approx. Optim. 7, Peter Lang, Frankfurt am Main, 1995.
  • [12] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, 2nd ed., Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2014.
  • [13] M. Gaydu, M. H. Geoffroy and Y. Marcelin, Prederivatives of convex set-valued maps and applications to set optimization problems, J. Global Optim. 64 (2016), no. 1, 141-158.
  • [14] A. D. Ioffe, Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc. 266 (1981), no. 1, 1-56.
  • [15] A. G. Kusraev and S. S. Kutateladze, Calculus of tangents and beyond, Vladikavkaz. Mat. Zh. 19 (2017), no. 4, 27-34.
  • [16] L. A. Lyusternik, On the conditional extrema of functionals (in Russian), Mat. Sb. 41 (1934), no. 3, 390-401.
  • [17] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Grundlehren Math. Wiss. 330, Springer, Berlin, 2006.
  • [18] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II. Applications, Grundlehren Math. Wiss. 331, Springer, Berlin, 2006.
  • [19] D. Pallaschke and R. Urbański, Pairs of Compact Convex Sets. Fractional Arithmetic with Convex Sets, Math. Appl. 548, Kluwer Academic, Dordrecht, 2002.
  • [20] C. H. J. Pang, Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity, Math. Oper. Res. 36 (2011), no. 3, 377-397.
  • [21] J.-P. Penot, Calculus Without Derivatives, Grad. Texts in Math. 266, Springer, New York, 2013.
  • [22] S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), no. 2, 292-309.
  • [23] W. Schirotzek, Nonsmooth Analysis, Universitext, Springer, Berlin, 2007.
  • [24] F. Severi, Su alcune questioni di topologia infinitesimale, Ann. Soc. Polon. Math. 9 (1930), 97-108.
  • [25] A. Uderzo, On some generalized equations with metrically C-increasing mappings: Solvability and error bounds with applications to optimization, Optimization 68 (2019), no. 1, 227-253.
  • [26] A. Uderzo, Solution analysis for a class of set-inclusive generalized equations: A convex analysis approach, Pure Appl. Funct. Anal. 5 (2020), no. 3, 769-790.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9860680-974d-4f5e-8049-425e00f5cc15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.