PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of silicon photomultipliers thermal generation in self-coincidence system applied in low level light measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents method for thermal generation reduction in low level light applications, especially where measured phenomena have random character. The algorithm was developed basing on cosmic ray measurements. The main parts of the system are: Silicon Photomultipliers (SiPM), front-end ASIC for amplifying and shaping signals. SiPM is a very sensitive device which can detect single photons. Comparing to a standard photomultiplier SiPM has a compact size, low operating voltage and it is immune to an electromagnetic field. Thermally generated signals are disadvantage of SiPM. This paper presents the measurement method to reduce influence of thermal generation.
Rocznik
Strony
505--510
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • University of Science and Technology, Department of Electronics, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • University of Science and Technology, Department of Electronics, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • University of Science and Technology, Department of Electronics, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • University of Science and Technology, Department of Electronics, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • University of Science and Technology, Department of Electronics, 30 Mickiewicza Ave., 30-059 Kraków, Poland
Bibliografia
  • [1] A. Roda, M. Guardigli, E. Michelini, and M. Mirasoli, “Bioluminescence in analytical chemistry and in vivo imaging”, TrAC Trends in Analytical Chemistry 28 (3), 307–322 (2009).
  • [2] I.F. Castro, A.J. Soares, and J.F. Veloso, “Impact of dark counts in low-light level silicon photomultiplier multi-readout applications”, IEEE Nuclear Science Sym. Conf. Record (NSS/MIC) 1, 1592–1596 (2009).
  • [3] M.K. Sasaki, S. Vicente, V. Grassi, and E Zagatto, “Differential Reaction-Rate Methods in Flow Analysis”, Open Analytical Chemistry J. 6, 28–38 (2012).
  • [4] Ł. Mik, W. Kucewicz, R. Szczypiński, D.G. Pijanowska, P. Dorosz, M. Baszczyk, S. Głąb, and M. Sapor, “Detection of Fluorescence Light using Silicon Photomultipliers”, Best of East for Eastern Partnership 1, http://www. bestofeast.mwci.eu. (2011).
  • [5] R.R. Singh, L. Leng, A. Guenther, and R. Genov, “A CMOSMicrofluidic Chemiluminescence Contact Imaging Microsystem”, IEEE J. Solid-State Circuits 47 (11), 2822–2833 (2012).
  • [6] A. Górecka-Drzazga, B.J. Cichy, P. Szczepańska, R. Walczak, and J.A. Dziuban, “Field-emission light sources for lab-on-achip microdevices”, Bull. Pol. Ac.: Tech. 60 (1), 13–18 (2012).
  • [7] V. Golovin, “Novel type of avalanche photodetector with Geiger mode operation”, Nuclear Instruments and Methods Section A 518, 560–564 (2004).
  • [8] “ImageEM – EMCCD technical note”, http://www.hamamatsu.com, (2013).
  • [9] N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G.F. Dalla Betta, A. Del Guerra, G. Llos´a, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototype of Silicon PhotoMultiplier (SiPM) at ITCirst”, Nuclear Instruments and Methods Section A 572, 422–426 (2006).
  • [10] K. Yamamoto, K. Yamamura, K. Sato, T. Ota, H. Suzuki, and S. Ohsuka, “Development of Multi-Pixel Photon Counter (MPPC)”, IEEE Nuclear Science Symp. Conf. Record 2, 1094–1097 (2006).
  • [11] Hamamatsu, “MPPC/Technical information”, http://www.hamamatsu.com/resources/pdf/ssd/mppc techinfo e.pdf (2013).
  • [12] M. Teshima, B. Dolgoshein, R. Mirzoyan, J. Nincovic, and E. Popova, “SiPM development for Astroparticle Physics application”, Proc. 30th Int. Cosmic Ray Conf. 5, 985–988 (2007).
  • [13] M. Ramilli, “Characterization of SiPM: temperature dependencies”, IEEE Nuclear Science Symp. Conf. Record 1, 2467–2470 (2008).
  • [14] M. Baszczyk, P. Dorosz, S. Głąb, W. Kucewicz, and M. Sapor, “Four channels data acquisition system for silicon photomultipliers”, Electronics – Constructions, Technologies, Applications 52 (12), 28–31 (2011).
  • [15] W. Baldini, M. Benettoni, R. Calabrese, V. Carassiti, G. Cibinetto, F. Dal Corso, F. Evangelisti, C. Fanin, E. Feltresi, N. Gagliardi, E. Luppi, R. Malaguti, M. Manzali, M. Melchiorri, M. Munerato, M. Posocco, A.C. Ramusino, M. Rotondo, R. Stroili, and L. Tomassetti, “A scintillator based muon system with SiPM readout for the SuperB detector”, IEEE Nuclear Science Symp. Conf. Record (NSS/MIC) 1, 1718–1721 (2010).
  • [16] Plastic Scintillating Fibers (Materials and Structures), http://kuraraypsf.jp/psf/ (2013).
  • [17] D. Dorosz, J. Dorosz, A. Zając, J. Żmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources”, Bull. Pol. Ac.: Tech. 60 (4), 673–682 (2012).
  • [18] R. Pagano, D. Corso, S. Lombardo, G. Valvo, C.N. Sanfilippo, G. Fallica, and S. Libertino, “Dark current in silicon photomultiplier pixels: data and model”, IEEE Trans. on Electron Devices 59 (9), 2410–2416, (2012).
  • [19] S. Woo-Suk, L. Chae-Hun, and C. Gyu-Seong, “Influence of guard-ring structure on the dark count rates of silicon photomultipliers”, Electron Device Letters 34 (3), 336–338 (2013).
  • [20] O. Soto, R. Rojas, S. Kuleshov, H. Hakobyan, A. Toro, W.K. Brooks, and M. Olivares, “Characterization of Multi Pixel Photon Counter (MPPC) array. Statistical approach”, Instrumentation and Measurement Technology Conf. (I2MTC) 1, 157–161, (2013).
  • [21] M.S. Longair, High Energy Astrophysics, pp. 270–286, Cambridge University Press, Cambridge, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a981cdc9-61cc-4559-81a3-f18f00faa804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.