PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy characteristics and micro cracking behaviors of deep slate rock under triaxial loadings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sichuan-Tibet railway tunnels are generally long and deep, and some of them pass through layered slate, which is prone to failure under high in situ stress. Insight into the mechanical behaviors of deep slate under different stress environments is critical to the safety of engineering practices in this area. To this end, we studied the energy characteristics and microcracking behaviors of slate samples under different triaxial loadings. The results showed that the confining pressure increased the strength, elastic modulus, Poisson’s ratio and crack characteristic stresses of the studied slate. As the confining pressure increased, the storage of elastic strain energy during the prepeak stress stage increased, and its release during the postpeak stress stage was inhibited. Additionally, we obtained the slate failure precursors by analyzing the acoustic emission (AE) evolution characteristics, i.e., “a sudden increase in AE metrics, followed by a quiet period, and then a sudden increase again” in terms of the AE count rate and AE energy rate after obvious expansion of the sample. Then, we further observed that with an increase in confining pressure, a gradual transition of the failure pattern from compressive shear to tensile shear occurred. Finally, we discussed the influence mechanisms of confining pressure on the slate failure behaviors and concluded that the change in the effective shear stress along the foliation planes played an important role in the failure mode transition.
Czasopismo
Rocznik
Strony
1457--1472
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
autor
  • China Railway Eryuan Engineering Group Company, Ltd., Chengdu 610031, China
  • China Railway Eryuan Engineering Group Company, Ltd., Chengdu 610031, China
autor
  • College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
  • China Railway Eryuan Engineering Group Company, Ltd., Chengdu 610031, China
autor
  • China Railway Eryuan Engineering Group Company, Ltd., Chengdu 610031, China
autor
  • MOE Key Laboratory of Deep Earth Science & Engineering, Sichuan University, Chengdu 610065, China
autor
  • College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
  • College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
autor
  • College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
  • MOE Key Laboratory of Deep Earth Science & Engineering, Sichuan University, Chengdu 610065, China
autor
  • MOE Key Laboratory of Deep Earth Science & Engineering, Sichuan University, Chengdu 610065, China
  • College of Architecture & Environment, Sichuan University, Chengdu 610065, China
Bibliografia
  • 1. Ai T, Zhang R, Liu JF, Zhao XP, Ren L (2011) Space-time evolution rules of acoustic emission locations under triaxial compression. J China Coal Soc 36(12):2048–2057
  • 2. Arzua J, Alejano LR, Walton G (2014) Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. Int J Rock Mech Min 69:93–104. https://doi.org/10.1016/j.ijrmms.2014.04.001
  • 3. Aydan O, Akagi T, Kawamoto T (1996) The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan. Rock Mech Rock Eng 29(3):125–143
  • 4. Chen ZQ, He C, Wu D, Xu GW, Yang WB (2017) Fracture evolution and energy mechanism of deep-buried carbonaceous slate. Acta Geotech 12(6):1243–1260
  • 5. Chen ZW, Han Z, Zhai WM, Yang JZ (2019) TMD design for seismic vibration control of high-pier bridges in Sichuan-Tibet Railway and its influence on running trains. Vehicle Syst Dyn 57(2):207–225
  • 6. Dan DQ, Konietzky H, Herbst M (2013) Brazilian tensile strength tests on some anisotropic rocks. Int J Rock Mech Min 58:1–7. https://doi.org/10.1016/j.ijrmms.2012.08.010
  • 7. Debecker B, Vervoort A (2013) Two-dimensional discrete element simulations of the fracture behaviour of slate. Int J Rock Mech Min. https://doi.org/10.1016/j.ijrmms.2013.02.004
  • 8. Du K, Li XF, Tao M, Wang SF (2020) Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int J Rock Mech Min 133:104411. https://doi.org/10.1016/j.ijrmms.2020.104411
  • 9. Faradonbeh RS, Taheri A, Sousa LRE (2020) Rockburst assessment in deep geotechnical conditions using true-triaxial tests and data-driven approaches. Int J Rock Mech Min 128:104279. https://doi.org/10.1016/j.ijrmms.2020.104279
  • 10. Ganne P, Vervoort A, Wevers M (2007) Quantification of pre-peak brittle damage: Correlation between acoustic emission and observed micro-fracturing. Int J Rock Mech Min 44(5):720–729
  • 11. Gerd M (2019) Application of the cluster analysis and time statistic of acoustic emission events from tensile test of a cylindrical rock salt specimen. Eng Fract Mech 210:84–94
  • 12. Hao XJ, Wang SH, Xu QS, Yang DQ, Zhang Q (2020) Influences of confining pressure and bedding angles on the deformation, fracture and mechanical characteristics of slate. Constr Build Mater 243:1–12. https://doi.org/10.1016/j.conbuildmat.2020.118255
  • 13. Hu GS, Zhao CY, Chen NS, Chen KT, Wang T (2019) Characteristics, mechanisms and prevention modes of debris flows in an arid seismically active region along the Sichuan-Tibet Railway route, China: a case study of the Basu-Ranwu section, southeastern Tibet. Environ Earth Sci 78(18):1–18
  • 14. Jia ZQ, Li CB, Zhang R, Wang M, Gao MZ (2019) Energy evolution of coal at different depths under unloading conditions. Rock Mech Rock Eng 52(11):4637–4649
  • 15. Jia ZQ, Xie HP, Zhang R, Li CB, Zhang ZT (2020a) Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression. Rock Mech Rock Eng 53(5):2063–2076
  • 16. Jia CJ, Xu WY, Wang RB (2020b) Characterization of the deformation behavior of fine-grained sandstone by triaxial cyclic loading. Constr Build Mater 38(4):3815–3830
  • 17. Li AQ, Zhang R, Ai T (2016) Acoustic emission space-time evolution rules and failure precursors of granite under uniaxial compression. Chin J Geotech Eng 38:306–311
  • 18. Li CB, Xie HP, Xie LZ (2017) Experimental and theoretical study on the shale crack initiation stress and crack damage stress. J China Coal Soc 042(004):969–976
  • 19. Li ZG, Xu GL, Huang P, Zhao X, Fu YP (2018) Mechanical and anisotropic properties of silty slates. Rock Soil Mech 39(05):1737–1746
  • 20. Li KH, Yin ZY, Cheng YM, Cao P, Meng JJ (2020a) Three-dimensional discrete element simulation of indirect tensile behaviour of a transversely isotropic rock. Int J Numer Anal Met 44(13):1812–1832
  • 21. Li CB, Xie HP, Wang J (2020b) Anisotropic characteristics of crack initiation and crack damage thresholds for shale. Int J Rock Mech Min 126:104178. https://doi.org/10.1016/j.ijrmms.2019.104178
  • 22. Liu N, Zhang CS, Chu WJ (2012) Fracture characteristics and damage evolution law of Jinping deep marble. Chin J Rock Mech Eng 31(8):1606–1613
  • 23. Liu XR, Guo JQ, Wang JB (2013) Investigation on mechanical properties and failure criterion of salt rock based on energy principles. Rock Soil Mech 34(02):305–310
  • 24. Liu Y, Ma TS, Wu H, Chen P (2020) Investigation on mechanical behaviors of shale cap rock for geological energy storage by linking macroscopic to mesoscopic failures. J Energy Storage 29:1–15. https://doi.org/10.1016/j.est.2020.101326
  • 25. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min 31(6):643–659
  • 26. Meng LB, Li TB, Jiang Y, Li YR (2013) Characteristics and mechanisms of large deformation in the Zhegu mountain tunnel on the Sichuan-Tibet highway. Tunn Undergr Space Technol 37:157–164. https://doi.org/10.1016/j.tust.2013.03.009
  • 27. Petruzalek M, Jechumtalova Z, Sileny J, Kolar P, Svitek T, Lokajicek T (2020) Application of the shear-tensile source model to acoustic emissions in westerly granite. Int J Rock Mech Min Sci 128:104246. https://doi.org/10.1016/j.ijrmms.2020.104246
  • 28. Qin L (2020) Study on large deformation characteristics and control technology of a railway tunnel. Sichuan University, Chengdu, China
  • 29. Ridge AR, Ziehl PH (2006) Evaluation of strengthened reinforced concrete beams: cyclic load test and acoustic emission methods. Aci Struct J 103(6):832–841
  • 30. Sammonds PR, Meredith PG, Murrell S (1994) Modeling the damage evolution in rock containing pore fluid by acoustic-emission. Rock Mech Petrol Eng 14(1):897–904
  • 31. Schiavi A, Niccolini G, Tarizzo P, Carpinteri A (2011) Acoustic emissions at high and low frequencies during compression tests in brittle materials. Strain 47(s2):105–110
  • 32. Shen JY, Jimenez R, Karakus M, Xu CS (2014) A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength. Rock Mech Rock Eng 2(47):357–369
  • 33. Tu YL, Liu XR, Zhong ZL, Li YY (2016) New criteria for defining slope failure using the strength reduction method. Eng Geol 212:63–71
  • 34. Wang SR, Liu ZW, Qu XH, Fang JB (2009) Large deformation mechanics mechanism and rigid-gap-flexible-layer supporting technology of soft rock tunnel. China J Highw Transp 22(6):90–95
  • 35. Wang CH, Sha P, Hu YF, Li CS, Guo QL (2011) Study of squeezing deformation problems during tunneling. Rock Soil Mech 32(S2):143–147
  • 36. Wang Y, Han JQ, Li CH (2020) Acoustic emission and CT investigation on fracture evolution of granite containing two flaws subjected to freeze-thaw and cyclic uniaxial increasing-amplitude loading conditions. Constr Build Mater 260:119769. https://doi.org/10.1016/j.conbuildmat.2020.119769
  • 37. Xie HP, Peng RD, Ju Y (2004) Energy dissipation of rock deformation and fracture. Chin J Rock Mech Eng 23(21):3565–3570
  • 38. Yang YM, Ju Y, Li FX, Gao F, Sun HF (2016) The fractal characteristics and energy mechanism of crack propagation in tight reservoir sandstone subjected to triaxial stresses. J Nat Gas Sci Eng 32:415–422. https://doi.org/10.1016/j.jngse.2016.04.049
  • 39. Yang SQ, Yin PF, Ranjith PG (2020) Experimental study on mechanical behavior and brittleness characteristics of Longmaxi formation shale in Changning, Sichuan Basin, China. Rock Mech Rock Eng 53(5):2461–2483
  • 40. Zhang ZZ, Gao F (2015) Confining pressure effect on rock energy. Chin J Rock Mech Eng 34(001):1–11
  • 41. Zhang R, Dai F, Gao MZ (2015) Fractal analysis of acoustic emission during uniaxial and triaxial loading of rock. Int J Rock Mech Min 79:241–249
  • 42. Zhang ZP, Xie HP, Zhang R, Zhang ZT (2018) Deformation damage and energy evolution characteristics of coal at different depths. Rock Mech Rock Eng 52(5):1–13
  • 43. Zhang XM, Ou XF, Gong FQ, Yang JS (2019) Effects of bedding on the dynamic compressive properties of low anisotropy slate. Rock Mech Rock Eng 52(4):981–990
  • 44. Zhang AL, Zhang R, Gao MZ, Zhang ZT, Zhang ZP, Zha ES (2020) Failure behavior and damage characteristics of coal at different depths under triaxial unloading based on acoustic emission. Energies 13(17):4451. https://doi.org/10.3390/en13174451
  • 45. Zhang AL, Xie HP, Zhang R, Ren L, Zhou JF, Gao MZ, Tan Q (2021) Dynamic failure behavior of Jinping marble under various preloading conditions corresponding to different depths. Int J Rock Mech Min 48:104959. https://doi.org/10.1016/j.ijrmms.2021.104959
  • 46. Zhao HG, Liu C, Huang G, Yu BC, Song ZL (2020) Experimental investigation on rockburst process and failure characteristics in trapezoidal tunnel under different lateral stresses. Constr Build Mater 259:119530. https://doi.org/10.1016/j.conbuildmat.2020.119530
  • 47. Zuo JP, Chen Y, Song HQ, Wei X (2017) Pre-peak axial crack strain evolution and nonlinear model for coal-rock combined body. Chin J Geotech Eng 39(9):1609–1615
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a97f3440-dcfe-476f-9dce-1f8957908830
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.