PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Structural Changes in Starch- Aluminosilicate Binder and Molding Sand with its Participation after Physical Curing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The organo-inorganic commercial binder Albertine F/1 (Hüttenes-Albertus) constituting the starch-aluminosilicate mixture was directed to structural studies. The paper presents a detailed structural analysis of the binder before and after exposure to physical curing agents (microwaves, high temperature) based on the results of infrared spectroscopy studies (FTIR). An analysis of structural changes taking place in the binder system with the quartz matrix was also carried out. Based on the course of the obtained IR spectra, it was found that during the exposure on physical agents there are structural changes within the hydroxyl groups in the polymeric starch chains and silanol groups derived from aluminosilicate as well as in the quartz matrix (SiO2). The curing of the molding sand takes place due to the evaporation of the solvent water and the formation of intramolecular and intermolecular cross-linking hydrogen bonds. Type and amount of hydrogen bonds presence in cured molding sand have an impact on selected properties of molding sand. Results indicates that for molding sand with Albertine F/1 during conventional heating a more extensive network of hydrogen bonds is created.
Rocznik
Strony
138--143
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Burian, A. (2009). New ecological binder systems. Slévárenství. LVII(1-2), 6. (in Czech).
  • [2] Lewandowski, J.L. (1995). Materials for casting moulds. Kraków: Akapit. (in Polish).
  • [3] Skubon, M.J. (1978). Microwave Binders Curing of Core and Coatings. AFS Transactions. 86(183), 183-186.
  • [4] Dench, E.C. (1970). US 3519517 A - Method of and means for microwave heating of organic materials.
  • [5] Brown, L.H., Stephans, L.C. (1972). US 3692085 - A process for producing cores by microwave heating.
  • [6] Lukacek, G. & Luther, J. (1981). Microwave accelerate core and mold curing. Foundry M&T. (05).
  • [7] Kottke, R.H. (1981). Microwave curing applications of furan foundry binders. AFS Transactions. 89, 251-260.
  • [8] Drożyński, D., Holzer, M., Kobot, M. & Lewandowski, J.L. (2000). Influence of water addition on mass strength with furfuryl urea resin cured under ambient conditions and using microwaves. Solidification of Metals and Alloys. 2(43), 133-138. (in Polish).
  • [9] Samsonowicz, Z., Wilczyński, J. & Wikiera, R. (1980). Microwave hardening of liquid masses with an organic binder. Prace Instytutu Odlewnictwa. (38). (in Polish).
  • [10] Pigiel, M. (1998). Curing of cores in microwaves. Acta Metallurgica Slovaca. 4(spec.2), 102-106. (in Polish).
  • [11] Granat, K., Nowak, D. & Stachowicz, M. (2010). The use of an innovative microwave curing method in the production of cast steel castings for the machine industry. Archiwum Technologii Maszyn i Automatyzacji. 30(1), 19-27. (in Polish).
  • [12] Stachowicz, M., Granat, K. & Nowak, D. (2011). The effect of the addition of α-Al2O3 on the residual strength of microwave-cured molding sands with water glass. Archives of Foundry Engineering. 11(spec.2), 203-208. (in Polish).
  • [13] Stachowicz, M., Granat, K. & Nowak, D. (2012). Measurement of flexural strength as a method of assessing the quality of a binder on the example of masses with water glass. Archives of Foundry Engineering. 12(1), 175-178.
  • [14] Stachowicz, M., Opyd, B., Granat, K. & Markuszewska, K. (2014). Effect of electrical properties of materials on effectiveness of heating their systems in microwave field. Archives of Foundry Engineering. 14(2), 111-114.
  • [15] Grabowska, B., Sitarz, M., Olejnik, E., Kaczmarska, K. & Tyliszczak, B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – Part I. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 135, 529-535. DOI:10.1016/j.saa.2015.06.084.
  • [16] Grabowska, B., Sitarz, M., Olejnik, E., Kaczmarska, K. & Tyliszczak, B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – In moulding sands, Part II. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 151, 27-33.
  • [17] Grabowska, B. (2009). Microwave crosslinking of polyacrylic compositions containing dextrin and their applications as molding sands binders. Polimery/Polymers. 54(7-8), 507-513.
  • [18] Grabowska, B. & Holtzer, M. (2008). Application of spectroscopic methods for investigation of the course of poly(sodium acrylate) crosslinking with use of different crosslinking agents. Polimery/Polymers. 53(7-8), 531-536.
  • [19] Kaczmarska, K.J. (2017). Sodium carboxymethyl starch (CMS-Na) as a material for use in moulding sand technology. Unpublished doctoral thesis. AGH University of Science and Technology. (in Polish).
  • [20] Additives for molding and core sand - Hüttenes Albertus Chemische Werke GmbH. (n.d.). Retrieved March 6, 2016, from http://www.huettenes-albertus.pl/produkty/dodatki_do _mas_formierskich_i_rdzeniowych/index.html. (in Polish).
  • [21] Kaczmarska, K., Grabowska, B., Drożyński, D., Kurleto, Ż. & Szymański, Ł. (2015). An assessment of the effectiveness of physical curing methods of molding sand bonded by binders based on starch and aluminosilicates. Metallurgy and Foundry Engineering. 41(3), 133-141.
  • [22] Fil, B.A., Özmetin, C. & Korkmaz, M. (2014). Characterization and electrokinetic properties of montmorillonite. Bulgarian Chemical Communications. 46(2), 258-263.
  • [23] Kizil, R., Irudayaraj, J. & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry. 50(14), 3912-3918. DOI:10.1021/jf011652p.
  • [24] Schuster, K.C., Ehmoser, H., Gapes, J.R. & Lendl, B. (2000). On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis. Vibrational Spectroscopy. 22(1-2), 181-190. DOI:10.1016/S0924-2031(99)00080-6.
  • [25] Sekkal, M., Dincq, V., Legrand, P. & Huvenne, J.P. (1995). Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. Journal of Molecular Structure. 349(95), 349-352. DOI:10.1016/0022-2860(95)08781-P.
  • [26] Budarin, V., Clark, J.H., Hardy, J.J.E., Luque, R., Milkowski, K., Tavener, S.J. & Wilson, A.J. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition. 45(23), 3782-3786. DOI:10.1002/anie.200600460.
  • [27] Ambjörnsson, H.A., Schenzel, K. & Germgård, U. (2013). Carboxymethyl cellulose produced at different mercerization conditions and characterized by NIR FT Raman spectroscopy in combination with multivariate analytical methods. BioResources. 8(2), 1918-1932.
  • [28] Vasko, P.D., Blackwell, J. & Koenig, J.L. (1972). Infrared and Raman spectroscopy of carbohydrates. Part II: Normal and coordinate analysis of α-D-glucose. Carbohydrate Polymers. 23, 407-416.
  • [29] Vasko, P.D., Blackwell, J. & Koenig, J.L. (1971). Infrared and Raman spectroscopy of carbohydrates. Part I: Identification of O-H and C-H related vibrational modes for D-glucose, maltose, cellobiose, and dextran by deuterium-substitution methods. Carbohydrate Research. 19, 297-310.
  • [30] Musić, S., Filipović-Vinceković, N. & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering. 28(1), 89-94. DOI:10.1590/S0104-66322011000100011.
  • [31] Shokri, B., Firouzjah, M.A. & Hosseini, S.I. (2009). FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. Proceedings of 19th International Plasma Chemistry Society. 1-4. Retrieved from http://www.ispc-conference.org/ispcproc/ispc19/791.pdf.
  • [32] Pasieczna-Patkowska, S. & Olejnik, T. (2012). Investigations of selected physicochemical properties modified with amine groups of mesoporous silica materials. Adsorbenty i katalizatory: wybrane technologie a środowisko. 68-91. (in Polish).
  • [33] Kwon, K.D., Vadillo-Rodriguez, V., Logan, B.E. & Kubicki, J.D. (2006). Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochimica et Cosmochimica Acta. 70(15), 3803-3819. DOI:10.1016/j.gca.2006.05.016.
  • [34] Comas-Vives, A. (2016). Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical chemistry chemical physics: PCCP. 18(10), 7475-82. DOI:10.1039/c6cp00602g.
  • [35] Krysztafkiewicz, A., Rager, B. & Maik, M. (1994). The effect of surface modification on the physicochemical properties of precipitated silica. Fizykochemiczne Problemy Mineralurgii. (in Polish).
  • [36] Gu, C., Li, G., Hu, Y., Qing, S., Hou, X. & Gao, Z. (2012). Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion. Journal of Fuel Chemistry and Technology. 40(11), 1328-1335. DOI:10.1016/S1872-5813(13)60002-X.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a97dbc58-c3a2-4f9a-8f8f-0abcb865b70a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.