PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A techno-economic comparison of 5G centralized wireless network architectures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Techniczno-ekonomiczne porównanie scentralizowanych architektur sieci bezprzewodowych 5G
Języki publikacji
EN
Abstrakty
EN
The key drawback of 5G technology implementation is the high total cost of ownership (TCO) of the architecture design and TCO of a suitable technology that will meet the 5G base station (BS) requrement. Requirements include low latency, high capacity and dense coverage and simultaneous support for applications such as machine-to-machine communication (M2M), device-to-device communication (D2D) and the internet of things (IoT). This study designs the most economical centralized wireless network architecture by modifying the existing macrocell, picocell and femtocell technologies. A mathematical model for capital expenditure (Capex) operational expenditure (Opex) and TCO for modified macrocell, modified gNodeB picocell (mpgNodeB) and femtocell is presented. A mathematical model for centralized wireless network architecture is also presented. The model has been tested and the results show that the Opex, Capex and TCO of the modified macrocell and picocell were found to be directly proportional to the number of gNodeBs. Sensitivity analysis (SA) also shows that the TCO of the mpgNodeB is one fourth of the gNodeB. SA further shows that the interest rate variation has a significant effect on the Capex, Opex and TCO of the gNodeB and mpgNodeB.
PL
Główną wadą wdrożenia technologii 5G jest wysoki całkowity koszt (TCO) projektu architektury oraz odpowiedniej technologii, która spełni wymagania stacji bazowej 5G (BS). Wymagania obejmują małe opóźnienia, dużą pojemność i gęsty zasięg oraz jednoczesną obsługę aplikacji, takich jak komunikacja maszyna-maszyna (M2M), komunikacja urządzenie-urządzenie (D2D) i Internet rzeczy (IoT). W ramach tego artykułu zaprojektowano najbardziej ekonomiczną architekturę scentralizowanej sieci bezprzewodowej poprzez modyfikację istniejących technologii makrokomórek, pikokomórek i femtokomórek. Przedstawiono matematyczny model wydatków kapitałowych (Capex), wydatków operacyjnych (Opex) i TCO dla zmodyfikowanej makrokomórki, zmodyfikowanej pikokomórki i femtokomórki. Przedstawiono również model matematyczny scentralizowanej architektury sieci bezprzewodowej.
Rocznik
Strony
12--19
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Johannesburg, South Africa
  • University of Johannesburg, South Africa
Bibliografia
  • [1] M. I. Erfanian, Rachid El Hattachi & Javan , Armando Annunziato, Kevin Holley, Clark Chen, Eric Hardouin, Lou Feifei, “NGMN 5G White Paper,” 2015.
  • [2] H. X. De Araujo, A. E. De Freitas, D. N. Prata, I. R. S. Casella, and C. E. Capovilla, “A multiband antenna design comprising the future 5G mobile technology,” Prz. Elektrotechniczny, vol. 95, no. 2, pp. 108–111, 2019.
  • [3] A. M. Ibrahim, I. M. Ibrahim, and N. A. Shairi, “Compact MIMO antenna for LTE and 5G applications,” Int. J. Microw. Opt. Technol., vol. 15, no. 4, pp. 360–368, 2020.
  • [4] J. S. M. Qian, Y. Wang, Y. Zhou, L. Tian, “A super base station based centralized network architecture for 5G mobile communication systems.,” Elsevier B.V., no. 6, p. 86, 2015.
  • [5] J. J. CHIN LIN, JINRI HUANG, RAN DUAN, CHUNFENG CUI, “Recent Progress on C-RAN Centralization and Cloudification .pdf,” IEEE ACCESS, 2014.
  • [6] W. Paper, “C-RAN The Road Towards Green RAN,” vol. 5, 2011.
  • [7] V. Krizanovic, D. Zagar, and K. Grgic, “Techno-Economic Analyses of Wireline and Wireless Broadband Access Networks Deployment in Croatian Rural Areas,” ConTEL 2011, no. April 2015, pp. 265–272, 2011.
  • [8] C. Bouras, V. Kokkinos, and A. Papazois, “Financing and Pricing Small Cells in Next-Generation Mobile Networks.” pp. 41–54, 2014.
  • [9] G. Smail and J. Weijia, “Techno-economic analysis and prediction for the deployment of 5G mobile network,” Proc. 2017 20th Conf. Innov. Clouds, Internet Networks, ICIN 2017, no. 2015, pp. 9–16, 2017.
  • [10] A. P. Christos Bouras, Vasileios Kokkinos, Anastasia Kollia, “Analyzing-Small-Cells-and-Distributed-Antenna-Systems-from- Techno-Economic-Perspective.pdf,” Int. J. Wirel. Networks Broadband Technol., vol. 6, 2017.
  • [11] C. Bouras, A. Kollia, and A. Papazois, “Dense Deployments and DAS in 5G: A Techno-Economic Comparison,” Wirel. Pers. Commun., vol. 94, no. 3, pp. 1777–1797, 2017.
  • [12] C. Bouras, S. Kokkalis, A. Kollia, and A. Papazois, “Technoeconomic analysis of MIMO das in 5G,” Proc. 2018 11th IFIP Wirel. Mob. Netw. Conf. WMNC 2018, 2018.
  • [13] C. Bouras, S. Kokkalis, A. Kollia, and A. Papazois, “Technoeconomic comparison of MIMO and DAS cost models in 5G networks,” Wirel. Networks, vol. 6, pp. 1–15, 2018.
  • [14] S. Verbrugge et al., “Modeling operational expenditures for telecom operators,” 2005 Conf. Opt. Netw. Des. Model. Towar. broadband-for-all era, ONDM 2005, vol. 2005, pp. 455–466, 2005.
  • [15] V. Nikolikj and T. Janevski, “A cost modeling of high-capacity LTE-advanced and IEEE 802.11ac based heterogeneous networks, deployed in the 700 MHz, 2.6 GHz and 5 GHz bands,” Procedia Comput. Sci., vol. 40, no. C, pp. 49–56, 2014.
  • [16] S. F. Yunas, W. H. Ansari, and M. Valkama, “Technoeconomical Analysis of Macrocell and Femtocell Based HetNet under Different Deployment Constraints,” vol. 2016, 2016.
  • [17] W. Elmannai and K. Elleithy, “Cost analysis of 5th generation technology,” 27th Int. Conf. Comput. Appl. Ind. Eng. CAINE 2014, pp. 97–103, 2014.
  • [18] T. Chrysikos, P. Galiotos, S. Kotsopoulos, and T. Dagiuklas, “Techno-economic analysis for the deployment of PPDR services over 4G/4G+ networks,” 2016 Int. Conf. Telecommun. Multimedia, TEMU 2016, pp. 181–187, 2016.
  • [19] A. Gawlak, “Profitability analysis of investment projects in distribution networks,” Prz. Elektrotechniczny, vol. 95, no. 8, pp. 13–16, 2019.
  • [20] E. Norty, “National Analytical Report 2010 population and Housing censes,” ACCRA, 2013.
  • [21] O. F. S. NCA Ghana Tests, “NATIONAL COMMUNICATIONS AUTHORITY TELCOS SANCTIONED GHC34 MILLION FOR FAILING QUALITY,” no. 6, pp. 4–7, 2018.
  • [22] National Communication Authority, “Quarterly Statistical Bulletin on Communications in Ghana,” Natl. Commun. Auth., vol. 2, no. 3, pp. 1–36, 2017.
  • [23] S. F. Yunas, W. H. Ansari, and M. Valkama, “Technoeconomical Analysis of Macrocell and Femtocell Based HetNet under Different Deployment Constraints,” Mob. Inf. Syst., vol. 2016, 2016.
  • [24] I. Joseph, “Statistical tuning of walfisch-bertoni pathloss prediction model based on building and street geometry sensitivity parameters in built−up terrains,” Am. J. Phys. Appl., vol. 1, no. 1, p. 10, 2013.
  • [25] L. Thabane et al., “A tutorial on sensitivity analyses in clinical trials : the what , why , when and how,” 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a97d37de-7085-47d8-b3c7-ccd444d01a48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.