Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The degree of undecidability of nonmonotonic logic is investigated. A proof is provided that arithmetical but not recursively enumerable sets of sentences definable by nonmonotonic default logic are elements of ∆n+1 but not Σ n nor Π n for some n ≥1 in Kleene- Mostowski hierarchy of arithmetical sets.
Słowa kluczowe
Rocznik
Tom
Strony
127--132
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Department of Computer Science, California State University Dominguez Hills 1000 East Victoria Street, Carson, California, 90747, U.S.A.
Bibliografia
- 1. Enderton H.B., Elements of Recursion Theory, Handbook of Mathematical Logic, (Barwise, J., ed.), pp. 527-566, North Holland, 1977.
- 2. Rogers Jr.H., Theory of Recursive Functions and Effective Computablity, MIT Press, 1992.
- 3. Suchenek M.A., Evaluation of Queries under Closed-World Assumption, Journal of Automated Reasoning, Volume 18, pp 357-398, 1997.
- 4. Suchenek M.A., Evaluation of Queries under Closed-World Assumption II, Journal of Automated Reasoning, Volume 25, pp 247-289, 2000.
- 5. Suchenek M. A., A review of: G. Antoniou, “Nonmonotonic Reasoning”, The Bulletin of Symbolic Logic, Volume 6, Issue 4, pp 484 and on, December 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a97499ca-b306-4fab-9ac9-afaad2e3c062