PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacture of Bead-Stiffened Panels Using the Single Point Incremental Sheet Forming Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experimental research on the fabrication of thin-walled panels with longitudinal stiffening ribs by the single point incremental sheet forming technique. The bead-stiffened panels were made of Alclad 2024-T3 aluminium alloy sheets commonly used in aircraft structures. The influence of forming parameters and tool strategy on surface quality and the possibility of obtaining stiffening ribs with the required profile and depth was tested through experimental research. Two tool path strategies, spiral with continuous sinking and multi-step z-level contouring, were considered. The results of the experiments were used to verify the finite element-based numerical simulations of the incremental forming process. It was found that the main parameter which influences the formability of test sheets is the tool path strategy; the tool path strategy with multi-step z-level contouring allowed the rib to be formed to a depth of 3.53 mm without risk of cracking. However a greater depth of rib equal of 5.56 mm was achieved with the continuous tool path. The tool path strategy was also the main parameter influencing the surface finish of the drawpiece during the single point incremental forming process.
Twórcy
  • Carpatian State School in Krosno, Krosno, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959, Rzeszów
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959, Rzeszów
autor
  • Technical University of Košice, Košice, Slovakia
Bibliografia
  • [1] Z. Liu, Int. J. Adv. Manuf. Technol. 98, 2987-3003 (2018).
  • [2] Z. Chang, J. Chen, Int. J. Mach. Tool. Manuf. 146, 103453 (2019).
  • [3] I. Peter, E. Fracchia, I. Canale, R. Maiorano, Procedia Manuf. 3, 50-58 (2019).
  • [4] G. Fan, L. Gao, G. Hussain, Z. Wu, Int. J. Mach. Tool. Manuf. 48, 1688-1692 (2008).
  • [5] M. Durante, A. Formisano, A. Langella, F.M.C. Minutolo, J. Mater. Process. Tech. 209, 4621-4626 (2009).
  • [6] G. Buffa, D. Campanella, L. Fratini, Int. J. Adv. Manuf. Technol. 66, 1343-1351 (2013).
  • [7] L. Zhu, N. Li, P.R.N. Childs, Propul. Power Res. 7, 103-119 (2018).
  • [8] G. Hussain, L. Gao, N. Hayat, U. Dar, Int. J. Adv. Manuf. Technol. 46, 543-549 (2010).
  • [9] G. Ambrogio, L. Filice, F. Gagliardi, Mater. Des. 34, 501-508 (2012).
  • [10] X. Li, H. Yu, G. Guo, D. Li, AIP Conf. Proc. 1567, 848 (2013).
  • [11] H. Wang, T. Wu, J. Wang, J. Li, K. Jin, Int. J. Adv. Manuf. Technol. 108, 3507-3515 (2020).
  • [12] G. Centeno, A.J. Martínez-Donaire, C. Vallellano, L.H. Martínez-Palmeth, D. Morales, C. Suntaxi, F.J. García-Lomas, Procedia Eng. 63, 650-658 (2013).
  • [13] H. Bayram, N.S. Köksal, Mater. Technol. 51, 111-116 (2017).
  • [14] B.J. Ruszkiewicz, S.S. Dodds, Z.C. Reese, J.T. Roth, I. Ragai, Incrementally formed stiffeners effect on the reduction of spring-back in 2024-T3 aluminium after single point incremental forming. Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference MSEC 2015, June 8-12, Charlotte (2015).
  • [15] J.R. Duflou, Y. Tunçkol, A. Szekeres, P.J. Vanherck, Mater. Process. Technol. 189 (1-3), 65-72 (2007).
  • [16] J. Jeswiet, J.R. Duflou, A. Szekeres, Adv. Mater. Res. 6-8, 449-456 (2005).
  • [17] A. Mohammadi, H. Vanhove, A. van Bael, D. Weise, J.R. Duflou, Key Eng. Mater. 639, 195-202 (2015).
  • [18] D. Adams, J. Jeswiet, Proc. Inst. Mech. Eng, Part B: J. Eng. Manuf. 228 (7), 757-764 (2014).
  • [19] J.R. Duflou, A.M. Habraken, J. Cao, R. Malhorta, M. Bambach, D. Adams, H. Vanhove, A. Mohammadi, J. Jeswiet, Int. J. Mater. Form. 11, 743-773 (2018).
  • [20] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, CIRP Annals 54 (2), 88-114 (2005).
  • [21] ISO 6892-1 - Metallic materials - Tensile testing - Part 1: Method of Test at Room Temperature, International Organization for Standardization, Geneva (2016).
  • [22] G.E. Totten, D.S. MacKenzie, Handbook of aluminum, alloy production and materials manufacturing, CRC Press, Boca Raton (2003).
  • [23] ISO 20482 - Metallic materials - Sheet and strip - Erichsen cupping test, International Organization for Standardization, Geneva (2013).
  • [24] M. Bambach, J. Ames, M. Azaouzi, L. Compagne, G. Hirt, J.L. Batoz, Initial experimental and numerical investigations into a class of new strategies for single point incremental sheet forming (SPIF). The 8th International ESAFORM Conference on Material Forming, Cluj-Napoca, Romania, 27th-29th April 2005, pp. 671-674 (2005).
  • [25] G. Ambrogio, L. Filice, F. Gagliardi, F. Micari, Adv. Mater. Res. 6-8, 479-486 (2005).
  • [26] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons Ltd., New York (2007).
  • [27] A. Hadoush, A.H. van den Boogaard, Int. J. Num. Meth. Eng. 90 (5), 597-612 (2012).
  • [28] C. Henrard, PhD Thesis, Numerical simulation of the Single Point Incremental Forming Process, University of Liege, Liege, Belgium (2008).
  • [29] Abaqus - Theory Manual, Dassault Systèmes, Vélizy-Villacoublay (2016).
  • [30] lCOA Mill Products Inc., Alloy 7075 sheet and plate, 2001.
  • [31] E. Randell, A. Hsiano, J. Shirokoff, Adv. Mater. Sci. Eng. 2017, 5282659 (2017).
  • [32] A. Merati, Int. J. Fatigue 27, 33-44 (2005).
  • [33] S. Stille, Very high cycle fatigue behaviour of riblet structured high strength aluminum alloy thin sheets, Forschungszentrum Jülich GmbH, Jülich (2015).
  • [34] X. Li, K. Han, Z. Li, D. Li, L. Zhang, Procedia Eng. 207, 842-847 (2017).
  • [35] M. Bambach, G. Hirt, S. Junk, Modelling and experimental evaluation of thincremental CNC sheet metal forming process, in: Proceedings 7th COMPLAS, Barcelona, Spain, April 7-10, 2003.
  • [36] B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, Int. J. Mach. Tools Manuf. 85, 14-29 (2014).
  • [37] Z. Liu, Y. Li, P.A. Meehan, Int. J. Adv. Manuf. Technol. 75, 395-409 (2014).
  • [38] Z.B. Liu, Y.L. Li, P.A. Meehan, Mater. Manuf. Process. 28 (5), 562-571 (2013)
  • [39] Y.X. Huang, B. Han, Y. Tian, H.J. Liu, S.X. Lv, J.C. Feng, J.S. Leng, Y. Li, Sci. Technol. Weld. Join. 16, 497-501 (2011).
  • [40] A.P. Mouritz, Introduction to aerospace materials, Woodhead Publishing Ltd., Oxford (2012).
  • [41] H. Toda, H. Oogo, K. Horikawa, K. Uesugi, A. Takeuchu, Y. Suzuki, M. Nakazawa, Y. Aoki, M. Kobayashi, Metall. Mater. Trans. A 45, 765-776 (2014).
Uwagi
1. The authors of this paper would like to kindly thank Dr Wojciech Bochnowski from the University of Rzeszow for the preparation of the SEM micrographs and help with surface roughness measurement.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a973acc5-48ee-4610-8428-1128a465ee0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.