PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning methods for optimal compatibility of materials in ecodesign

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Machine learning (ML) methods facilitate automated data mining. The authors compare the effectiveness of selected ML methods (RBF networks, Kohonen networks, and random forest) as modelling tools supporting the selection of materials in ecodesign. Applied in the design process, ML methods help benefit from the knowledge, experience and creativity of designers stored in historical data in databases. Implemented into a decision support system, the knowledge can be utilized – in the case under analysis – in the process of design of environmentally friendly products. The study was initiated with an analysis of input data for the selection of materials. The input data, specified in cooperation with designers, include both technological and environmental parameters which guarantee the desired compatibility of materials. Next, models were developed using selected ML methods. The models were assessed and implemented into an expert system. The authors show which models best fit their purpose and why. Models supporting the selection of materials, connections and disassembly methods help boost the recycling properties of designed products.
Rocznik
Strony
199--206
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Kazimierz Wielki University, Institute of Computer Science, 30 Chodkiewicza St., 85-064 Bydgoszcz, Poland
autor
  • Poznań University of Technology, Faculty of Mechanical Engineering and Management, 5 Maria Skłodowska-Curie Square, 60-965 Poznań, Poland
Bibliografia
  • [1] I. Rojek and E. Dostatni, “Artificial Neural Network-Supported Selection of Materials in Ecodesign”, in Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, vol. I, pp. 422‒431, eds. J. Trojanowska, O. Ciszak, J. Machado and I. Pavlenko, Springer, Cham, 2019.
  • [2] I. Rojek, E. Dostatni, and A. Hamrol, “Automation and Digitization of the Material Selection Process for Ecodesign”, in Intelligent Systems in Production Engineering and Maintenance, vol. 835, pp. 523‒532, eds. A. Burduk, E. Chlebus, T. Nowakowski and A. Tubis, Springer, Cham, 2019.
  • [3] I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of Technological Processes with the Use of Decision Trees Method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO 2017, CISIS 2017, ICEUTE 2017. Advances in Intelligent Systems and Computing, vol. 649, pp 318‒327, eds. H. Pérez García, J. Alfonso-Cendón, L. Sánchez González., H. Quintián and E. Corchado, Springer, Cham, 2018.
  • [4] E. Dostatni, I. Rojek, and A. Hamrol, “The Use of Machine Learning Method in Con-current Ecodesign of Products and Technological Processes”, in: Advances in Manufacturing. Lecture Notes in Mechanical Engineering, vol. 649, pp. 321‒330, eds. A. Hamrol, O. Ciszak, S. Legutko and M. Jurczyk, Springer, Cham, 2018.
  • [5] R. Geryło, “Energy-related conditions and envelope properties for sustainable buildings”, Bull. Pol. Ac.: Tech. 64(4), 697‒707 (2016).
  • [6] D.K. Zuzek, “ Environmental awareness of entrepreneurs as part of sustainable development”, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach 11(326), 162‒171 (2017), [in Polish].
  • [7] ISO/TR 14062: Environmental management – integrating environmental aspects into product design and development (2001).
  • [8] N. Bey, M.Z. Hauschild, and T.C. McAloone, “Drivers and barriers for implementation of environmental strategies in manufacturing companies”, CIRP Ann. e Manuf. Technol. 62, 43‒46 (2013).
  • [9] E.A. Dekoninck, L. Domingo, J.A. O’Hare, D.C.A. Pigosso, T. Reyes, and N. Troussier, “Defining the challenges for ecodesign implementation in companies: Development and consolidation of a Framework”, Journal of Cleaner Production, 135, 410‒425 (2016).
  • [10] E. Dostatni, “Recycling-oriented eco-design methodology based on decentralised artificial intelligence”, Manag. Prod. Eng. Rev. 9(3), 79‒89 (2018).
  • [11] E. Dostatni, J. Diakun, D. Grajewski, R. Wichniarek, and A. Karwasz, “Multi-agent system to support decision-making process in design for recycling”, SOFT COMPUTING 20(11), 4347‒4361 (2016).
  • [12] I. Bereketli and E. Genevois Mujde, “An integrated QFDE approach for identifying improvement strategies in sustainable product development”, Journal of Cleaner Production 54, 188‒198 (2013).
  • [13] T. Sakao, “A QFD-centred design methodology for environmentally conscious product design”, International Journal of Product Research, 45(18‒19), 4143‒4162 (2007).
  • [14] T.A. Chiang, Z.H. Che, and T.T. Wang, “A design for environment methodology for evaluation and improvement of derivative consumer electronic product development”, J Syst. Sci. Syst. Eng. 20(3), 260‒274 (2011).
  • [15] J. Li, Z. Wu, and H-C. Zhang, “Application of neural network on environmental impact assessment tools”, Int. J. Sustainable Manufacturing, 1(1/2), 100‒121 (2008).
  • [16] B.S. Costa, A.C. Bernardes, J.V.A. Pereira, V.H. Zampa, V.A. Pereira, G.F. Mato, E.A. Soares, C.L. Soares, and A.F. Silva, “Artificial Intelligence in Automated Sorting in Trash Recycling”, in ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 15, 1‒8 (2018).
  • [17] Artificial Intelligence put to use in Recycling, http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling, (access: 19.04.2019).
  • [18] D. Hinchliffe and F. Akkerman, “Assessing the review process of EU Ecodesign regulations”, Journal of Cleaner Production 168, 1603‒1613 (2017).
  • [19] D. Jamróz and T. Niedoba, “Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types”, Arch. Min. Sci. 60 (1), 39–50 (2015), DOI 10.1515/amsc-2015‒0003.
  • [20] Z. Hendzel, “Collision free path planning and control of wheeled mobile robot using Kohonen self-organising map”, Bull. Pol. Ac.: Tech. 53(1), 39‒47 (2005).
  • [21] D. Grzecha, “Soft fault clustering in analog electronic circuits with the use of self-organizing neural network, Metrol. Meas. Syst. XVIII(4), 555–568 (2011).
  • [22] D. Jankowski and M. Amanowicz, ”On Efficiency of Selected Machine Learning Algorithms for Intrusion Detection in Software Defined Networks”, Intl Journal of Electronics and Telecommunications 62(3), 247‒252 (2016), DOI: 10.1515/eletel-2016‒0033.
  • [23] S. Klancnik, J. Balic, and F. Cus, “Milling Strategy Prediction with SOM Neural Network”, in Proc. 9th IFAC Workshop on Intelligent Manufacturing Systems, Szczecin, 2008.
  • [24] A.P. Souza Braga, A.C. Carvalho, and O.J.F. Gomes, “Computational Intelligence Applied to the Automatic Monitoring of Dressing Operations in an Industrial CNC Machine”, in Advances of Computational Intelligence in Industrial Systems, vol. 116, pp. 249‒268, eds. L. Ying, S. Aixin, T.L. Han, F.L. Wen, and L. Ee-Peng, Springer-Verlag, Berlin, Heidelberg, 2008.
  • [25] M. Kamiński and C.T. Kowalski, “Rotor fault detector of the converter-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62(1), 69‒76 (2014), DOI: 10.2478/bpasts-2014‒0008.
  • [26] S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517‒525 (2019), DOI: 10.24425/bpasts.2019.129650.
  • [27] M. Luzar, Ł. Sobolewski, W. Miczulski, and J. Korbicz, “Prediction of corrections for the Polish time scale UTC(PL) using artificial neural networks”, Bull. Pol. Ac.: Tech. 61(3), 589‒594 (2013).
  • [28] S. Osowski, K. Siwek, and R. Szupiluk, “Ensemble neural network approach for accurate load forecasting in the power system”, International Journal of Applied Mathematics and Computer Science 19(2), 303‒315 (2009).
  • [29] S. Osowski and K. Siwek, “Mining Data of Noisy Signal Patterns in Recognition of Gasoline Bio-Based Additives using Electronic Nose”, Metrology and Measurement Systems 24(1), 27‒44 (2017), DOI: 10.1515/mms-2017‒0015.
  • [30] B. Szeląg, L. Bartkiewicz, J. Studziński, and K. Barbusiński, “Evaluation of the impact of explanatory variables on the accuracy of prediction of daily inflow to the sewage treatment plant by selected models nonlinear”, Archives of Environmental Protection 43(3), 74‒81 (2017), DOI: 10.1515/aep-2017‒0030.
  • [31] V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Ac.: Tech. 66(6), 799‒810 (2018).
  • [32]Q. Zhu, X. Ji, C. Cai, and J. Wang, “A machine learning-based mobile robot visual homing approach”, Bull. Pol. Ac.: Tech. 66(5), 621‒634 (2018).
  • [33]J. Hook, F. Noroozi, O. Toygar, and G. Anbarjafari, “Automatic speech based emotion recognition using paralinguistics features”, Bull. Pol. Ac.: Tech. 67(3), 479‒488 (2019).
  • [34]C. Li, Z. Zhang, G. Xia, X. Xie, and Q. Zhu, “Efficient learning variable impedance control for industrial robots”, Bull. Pol. Ac.: Tech. 67(2), 201‒212 (2019).
  • [35]S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517‒525 (2019).
  • [36]F. Horn and K.-R. Müller, “Predicting pairwise relations with neural similarity encoders”, Bull. Pol. Ac.: Tech. 66(6), 821‒830 (2018).
  • [37]M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected technical issues of deep neural networks for image classification purposes”, Bull. Pol. Ac.: Tech. 67(2), 363‒376 (2002).
  • [38]D. Rajeev, D. Dinakaran, and S.C.E. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of AISI4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553‒559 (2017).
  • [39]R. Tadeusiewicz, R. Chaki, and N. Chaki, Exploring Neural Networks with C#, CRC Press, Taylor & Francis Group, Boca Raton, 2014.
  • [40]StatSoft Statistica, Internetowy podręcznik statystyki, http://www.statsoft.pl/textbook/stathome_stat.html?http%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstclatre.html, [in Polish], (access:10.01.2019).
  • [41]T. Kohonen, “Self-Organizing Maps”, Computer Journal of Springer Series in Information Sciences, 30(3), 501‒505 (2001).
  • [42]L. Breiman, “Random forests”, Machine Learning 45, Springer-Verlag, 5‒32 (2001).
  • [43]A. Saniuk, M. Jasiulewicz-Kaczmarek, A. Samolejova, S. Saniuk, and R. Lenort, “Environmental favorable foundries through maintenance activities”, METALURGIJA 54(4), 725‒728 (2015).
  • [44]M. Sabaghi, C. Mascle, and P. Baptiste, “Evaluation of products at design phase for an efficient disassembly at end-of-life”, Journal of Cleaner Production 116, 177‒186 (2016).
  • [45]Chemical Compatibility Chart Plastics., http://www.terrauniversal.com/appendi-cies/plastics_material_compatibility.php/, (access: 14.04.2016).
  • [46]MATERIALS – Plastics Eco-3e, http://eco3e.eu/en/base/plastics/, (access:10.01.2019).
  • [47]Ecodesign Guide of WEEE Compliance Schemes, http://eco3e.eu/en/, (access:10.01.2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a971974d-dc5c-4d76-9117-7032fda92adf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.