PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the stress-strain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reviews methods and trends of numerical modelling of geomechanical processes around underground mine excavations. The most rational method of determining the additional stresses caused by the mine excavations is chosen. Mathematical modelling was performed for excavations of various cross sections and different strength of rocks. The dimensions of the inelastic deformation zone around the mine excavations have been identified. The area of the total fracture zone around the excavation, as well as the area of the roof fracture zone are calculated. The results of the fracture zone modelling are presented both as coordinates and in a graphical form. To simplify application of the modelling results, dependency plots of the obtained parameters were created and analytical dependencies of the fracture zone parameters were identified. The SURFER and KOMPAS software packages were used as the graphic tools to visualize the modelling results.
Rocznik
Strony
220--227
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • St. Petersburg Mining University, St. Petersburg, 199106, Russia
  • St. Petersburg Mining University, St. Petersburg, 199106, Russia
  • Karaganda Technical University Non-Profit Joint-Stock Company, Karaganda, Kazakhstan
Bibliografia
  • [1] https://diss.igduran.ru/sites/default/files/disser/prischepa/prischepa-disser.pdf.
  • [2] https://sinref.ru/000_uchebniki/01701gornoe_delo/012_vasuchkov_gorn_delo/017.htm.
  • [3] Baklashov I, Kartosia B. Mechanics of underground structures and rock support designs. Moscow: StudentPubl; 2012. p. 543.
  • [4] SP 91.13330.2012 Underground mine workings. Updated version of SNiP II-94-80.
  • [5] https://www.dissercat.com/content/sozdanie-metodov-obespecheniya-ustoichivosti-gornykh-vyrabotok-rudnikov-v-usloviyakh-formiru.
  • [6] https://www.kazedu.kz/referat/171514.
  • [7] Trushko V. Development prospects of Geomechanics in conditions of a new technological Mode/V.L.Trushko, A.G. Protosenya. J Minin Inst 2019;236:162-6. https://doi.org/10.31897/PMI.2019.2.162.
  • [8] Karasev M, Buslova M, Wilner M, Nguyen T. Methodology for predicting stress-strain state of vertical shafts support at the intersection with a drift in salt rocks. J Minin Inst 2019; 240:628-37. https://doi.org/10.31897/PMI.2019.6.628.
  • [9] Kovalski E, Karpov G, Leisle A. Geomechanic models of jointed rock mass/Int J Civ Eng Technol;6(13):440 - 448.
  • [10] Ilinets A, Sirenko Y, Sidorenko A. Computer modelling of a floor heave in coal mines. J Phys Conf 2019;1333:1-5.
  • [11] Industrial-wood.ru/zolotorudnye-mestorozhdeniya/14197-izuchenie-napryazhennogo-sostoyaniya-massiva-gornyh-porod-i-metody-opredeleniya-dopustimyh-parametrov-sistem-razrabotki-zolotorudnyh-mestorozhdeniy.html.
  • [12] Gospodarikov A, Bespalov L. Application of boundary element method to calculate parameters of stress-strain state of rock mass in the vicinity of mine excavations of various profiles. J Minin Inst 2009:217-20. St. Petersburg.
  • [13] Kolokolov S. Mechanism of fracture zone formation around development workings and their impact on the rock sup- porting structures. abstract of the thesis for the degree of Doctor of Technical Sciences: 01.02.07. S.B. Kolokolov. Alma-Ata; 1992.
  • [14] Sudarikov A, Muratbakeev E. Analysis of rock mass state around the mine excavations with arched and trapezoidal cross-sections. In: Collection: modern educational technologies in specialists training for mineral resource complex. Collection of research papers of the III All-Russian Scientific Conference; 2020. p. 1043-50.
  • [15] Imashev A. Justification of stability of technogenic voids in conditions of ushkatyn-3 mine of zhairemsky GOK JSC. Master Degree Thesis. 2010. p. 97. Karaganda,KarGTU.
  • [16] https://www.kb-sp.ru/informatsiya/geotehnichskaya_model_kulona_mora.
  • [17] Study of compression strength of fractured rock mass/A.G. Protosenya, P.E. Verbilo. J Minin Inst 2017;223:51-7. https://doi.org/10.18454/PMI.2017.1.
  • [18] Тrushko V, Protosenya A, Verbilo P. Predicting strength of pillars in fractured rock mass during development of apatite-nephelinic ores. ARPN J Engin Appl Sci 2018;8(13):2864-72.
  • [19] Protosenya A, Verbilo P, Karasev M. Research of the mechanical characteristics' anisotropy of apatite-nepheline ores block rock mass. Int J Mech Eng Technol 2018;11(9):1962-72.
  • [20] https://lektsii.org/8-34598.html.
  • [21] Kurzaeva L. Regressional analysis in electronic spreadsheets. Int J Appl Basic Res 2016;12-7:1234-8. Available at: https://applied-research.ru/ru/article/view?id¼11019. [Accessed 24 August 2020]. accessed.
  • [22] Borovikov V. A popular introduction to state-of-the-art data analysis in the STATISTICA system. A training manual for higher education institutions. Moscow, Goriachayaliniya: telekom Publ.; 2013. p. 288.
  • [23] Ignatiev S, Sudarikov A, Imashev A. Modern mathematical forecast methods of maintenance and support conditions for mining tunnel. J Min Inst 2019;238:371-5.
  • [24] Sidorenko A, Ivanov V, Sidorenko S. Computer modeling of rock massif stress condition for mining planning on over-worked seam. J Phys Conf 2020;1661:1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a95bf192-0c30-4239-b3b4-4c87fd07da2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.