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Abstract 

An approximate method for determination of dynamic characteristics of structures with viscoelastic dampers is 

proposed in this paper. A fractional derivative is used to describe the dynamic behaviour of viscoelastic 
dampers. The method is based on a continuous dependency of the sensitivity of eigenvalue on a certain 

artificially introduced parameter which scaled up the influence of the damping term in the eigenvalue problem. 

Some results of a representative calculation are also presented and briefly discussed. 
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1. Introduction 

Natural frequencies, non-dimensional damping ratios and modes of vibration are the 

fundamental dynamic characteristics of every structural system. These quantities are 

obtained after solving appropriately defined eigenvalue problems. It is a well known 

procedure when the damping of systems can be neglected or when the so-called 

proportional damping could be assumed. The problem is much more complex when 

damping takes place because the eigenvalue problem is often nonlinear and because 

complex calculations are involved. The procedure of determination of dynamic 

characteristics is even more complicated when the fractional derivative modes are used 

to describe viscoelastic (VE) dampers. In this case, usually, an advanced procedure, 

called the continuation method, is used to solve the nonlinear eigenvalue problem [1, 2]. 

Adhikari [3] used the Neumann expansion method to obtain first and second order 

approximations for complex eigenvectors. 

In this paper, the method of determination of an approximate solution to the 

nonlinear eigenvalue problem describing the dynamic properties of structures with 

fractional dampers is presented. The method used a solution to the classical eigenvalue 

problem without damping and a differential equation to calculate the natural frequencies 

and non-dimensional damping ratios sought. Only a partial solution to the classic 

eigenvalue problem is needed. The method presented is an extension of the method 

recently proposed by Lazaro [4] but, in contrast to that method, only a partial solution to 

the classic eigenvalue problem is necessary and the method is extended to the case of a 

system of which the viscoelastic properties of dampers or materials are described by 

fractional derivatives. A previous approach in a similar direction was presented, also by 

Lazaro, in [5]. 
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2. Equation of motion of structures with viscoelastic (VE) dampers 

The elastic, planar frame structures with VE dampers are considered. The fractional 

model, shown in Fig. 1, is used as a model of dampers. It consists of the fractional 

Kelvin element which is connected in parallel with the fractional Maxwell element. The 

rhombus shown in the figure denotes the viscoelastic or springpot element [6]. This 

model of damper can be regarded as a generalized one. A set of specific models arise 

from it: the simple fractional Maxwell (when 000 == ck ), the fractional Kelvin model 

(when 011 == ck ) and the fractional Zener model (when 00 =c ). This means that 

almost all of the fractional models known in the literature up to now are taken into 

account by the above fractional model. Here 0k , 1k  and 0c , 1c  are the stiffness and 

damping factors of damper, respectively, and a  is the order of the fractional derivative; 

( 10 £<a ). Well known classic rheological models of damper are obtained for 1=a . 

 

 

Figure 1. Mechanical diagram of the fractional model of damper 

The total force in this model, )()()( 10 tututu += , is the sum of forces that occur in 

the Kelvin element )(0 tu  and the force in the fractional Maxwell element )(1 tu , i.e.: 

))()(())()(()( 000 tqtqDctqtqktu jktjk -+-= a , 

))()(()( 11 tqtqktu jds -= ,      ))(()( 11 tqqDctu dktd -= a , 

(1) 

(2) 

where the symbol )(·a
tD  denotes the Caputo or Riemann-Liouville fractional derivative 

of (·) of the order a  with respect to time t . The symbol )(tqd  denotes the so-called 

“internal variable” (see also [6, 7]). It is easy to find that )()()( 111 tututu ds == .  

The equation of motion of structures with VE dampers could be written in the 

following form (see also [6, 7]): 

)()()()( tttDt t PKqqCqM =++ a
&&  (3) 

Here, M , C , K  are the )( nn´  global mass, damping and stiffness matrices, 

respectively. )(tP  is the vector of excitation forces and )(tq  is the )1( ´n  global vector 

of displacements, which contains also all internal variables )(tqd . For the sake of 

simplicity, the damping properties of structure are neglected. The mass and damping 

matrices are often singular and the stiffness matrix is positively defined. 

Assuming that 0P =)(t  and applying the Laplace transform (with zero initial 

conditions), the following nonlinear eigenvalue problem is obtained from Eq (3): 
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0qKCM =++ )( 2 ass  (4) 

where s  is the Laplace variable and q  is the Laplace transform of )(tq . 

3. Approximate method of solution to the nonlinear eigenvalue problem 

First of all, the artificial parameter p  is introduced and Eq. (4) is rewritten as: 

0qKCMqD =++= )()()),(( 2 pssppps a  (5) 

For 1=p , the solution to the eigenvalue problem (4) is obtained whereas for 0=p , 

Eq. 5 is reduced to the following linear eigenvalue problem  

0qKM =+ )( 2s  (6) 

which has a well known set of solutions of the type wi=s , aq = , where w  and a  are 

the natural frequency and mode of vibration, respectively, and 1i -= . Let us note that 

the influence of the damper’s stiffness is still incorporated in the stiffness matrix K . It is 

assumed that the eigenvector q  fulfills the following normalization condition: 

1)(])(2)[( 1 =+ - ppspspT
qCMq

aa  (7) 

Now, the sensitivity of the solution to the eigenvalue problem with respect to 

changes of parameter p  will be analyzed. After differentiating Eqs (5) and (7) with 

respect to parameter p , the following set of equations are obtained (see also [7]): 
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from which the sensitivity of the eigenvector p¶¶ /q  and the sensitivity of the 

eigenvalue ps ¶¶ /  can be found.  

Equation (8) is multiplied by T
q and transformed to the following form: 
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The functions ))( (  pA q  and ))(),((  ppsB q  are expanded in the Taylor’s series in 

the vicinity of 0=p , i.e.: 
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where 

aCa  )0 (  TA =  ,        Maa
TB  i2)0(  w=  (13) 
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Moreover, taking into account that both the eigenvalue s  and the eigenvector q  depend 

on p , we can write: 
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The values of the above derivatives at 0=p  are: 
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The sensitivities p¶¶ /q  and  / ps ¶¶ , calculated at 0=p , can be determined from 

Eqs (8) and (9). In the vicinity of 0=p , these equations take the following form: 
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from which the sought quantities could be determined. 

Finally, Eq (10) could be rewritten in the form of the following differential equation: 
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It should be noted that, for 0=p , the normalization condition (7) is reduced to 

1 i2 =Maa
Tw , which means that 1  0 =b . Moreover, from Eq (19) 
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which means that 01 =b . 

Finally, Eq (20) is reduced to 
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),()( 10 psfpaas
p

s
=+-=

¶

¶ a
 (24) 

and only the constant 1a  depends on a . 

The solution to Eq (24) must fulfill the following initial condition: for 0=p  

wi)0( =s  or wi)0( -=s , depending on which complex conjugate solution is sought.  

Before describing the method for solving Eq (24), the special case 1=a  will be 

discussed. It means that dampers are described by classic rheological models and Eq (24) 

takes the following form: 

)( 10 paas
p

s
+-=

¶

¶
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Solution to Eq (25) fulfilling the described above initial conditions is given by  

)( exp i)( 2
12

1
0 papaps +±= w  (26) 

It means that, for 1=p , the following approximate solution to the eigenvalue of the 

nonlinear eigenvalue problem (4) is obtained: 

)( exp iˆ
12

1
0 aas +±= w  (27) 

The above result is identical with the one obtained in [4]. 

An implicit version of the Euler method is used to solve Eq (24) numerically. First of 

all, the increment of p  is chosen and denoted by h . Moreover, a set of points are 

chosen on the p  axis in such a way that hpp nn +=+1  and the notation nn sps =)(  is 

used. According to the Euler method 

2/ ],(),([ )111 hpsfpsfss nnnnnn +++ ++=  (28) 

and for 0=n , wi)0( 0 ±== ss . 

The simple iteration method is adopted for solving the nonlinear algebraic equation 

(28) with respect to 1+ns . The initial approximation of 1+ns  is calculated from the 

formula:  

),(
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and the (i+1)-th approximation of 1+ns  is given by 
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where the superscript denotes the number of iteration. 

The iteration is continued until the following inequality is fulfilled:  
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where e  is the assumed accuracy of calculation.  

Having the eigenvalue hm i+=s , the natural frequency w  and the non-dimensional 

damping ratio g  is determined from 

222 hmw +=  ,        wmg /-=  (32) 
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The approximation of eigenvector q  is given by 

0=¶
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p
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aq  (33) 

4. Representative results 

Results for a four-storey shear frame with two dampers located at the first and fourth 

storeys will be presented. The fractional Kelvin model is used for describing the 

dampers. The following data are used for describing the frame: (i) the storeys’ stiffness 

are: [N/m] 100.26 6
21 ×== kk , [N/m] 100.20 6

43 ×== kk ; (ii) the storeys’ masses are: 

[kg] 100.34 3
4321 ×==== mmmm . The first-floor damper's parameters are: 8.0=a , 

[N/m] 100.10 6
1,0 ×=k , /m][Ns 104.0 6

1,0
a×=c  and the damper’s parameters for the 

fourth floor are: 8.0=a , [N/m] 100.6 6
2,0 ×=k , /m][Ns 102.0 6

2,0
a×=c .  

The system matrices are: [ ]4321   ,   ,  , mmmmdiag=M ,  
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The natural frequencies of frame without dampers are in the first column of Table 1, 

whereas in the next column, there are the natural frequencies resulting from Eq (6) when 

the stiffness matrix is the sum of the stiffness of frame and dampers. 

Table 1. Natural frequencies of frame 

Frame without dampers From Eq (6) Difference  

rad/s 9.273671 =w  rad/s 9.901211 =w  %77.6  

rad/s 25.355472 =w  rad/s 27.95942 =w
 

%27.10  

rad/s 39.202043 =w  rad/s 43.152063 =w
 

%07.10  

rad/s 48.98574 =w  rad/s 50.519304 =w  %13.3  

 

Results of calculation are presented in Table (2). The exact vales of eigenvalues are 

obtained by means of the continuation method described in [1]. The second column 
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collect results obtained by means of Eq (24). Very similar results are obtained and 

differences are not greater than 0.2 %. Moreover, in Table 3, the exact and approximate 

natural frequencies and non-dimensional damping ratios are compared. It is evident that 

the approximate results have an very good accuracy.  

Although in Table 4, the eigenvalues of frame with dampers are stated, now, the 

dampers are described with the help of a classic Kelvin model ( 0.1=a , and other 

damping data are as stated previously). In the second column, the eigenvalues calculated 

from Eq (27) are presented. Moreover, the exact values of natural frequencies and non-

dimensional damping ratios are shown. Exact eigenvalues are obtained using the 

classical approach given in [6]. 

A comparison of the eigenvalues obtained from the formula derived by Lazaro in [4] 

with the ones resulting as the solution to the differential equation (24) is presented in 

Table 5.  

Table 2. Eigenvalues for a frame with the fractional Kelvin dampers ( 8.0=a ) 

Eigenvalues (exact results) Eigenvalues – Euler Eq (24) Differences 

9.94280  i 0.1125015,1 ±-=s
 

9.94295 i 0.112625,1 ±-=s  % 0.00 i0.11% +  

28.3731  i 1.112796,2 ±-=s  28.3720 i 1.112406,2 ±-=s  % 0.00 i% 0.03 +  

43.9430 i 2.611797,3 ±-=s  43.9405 i2.610427,3 ±-=s  % 0.00 i0.05% +  

50.9182 i 1.580188,4 ±-=s   50.9174 i 1.578998,4 ±-=s  % 0.00 i0.08% +  

 

Table 3. Natural frequencies and non-dimensional damping ratios – comparison of exact 

and approximate results for a frame with the fractional Kelvin dampers ( 8.0=a ) 

Frequency 

(exact results) 

Damping ratio 

(exact results) 

Frequency 

(approximate results) 

Approximate 

damping ratio 

rad/s 9.943441 =w
 

0.011311 =g  rad/s 9.94359 1 =w  01133,01 =g  

rad/s 28.39492 =w  0.039192 =g  rad/s 28.3938 2 =w
 

03918.02 =g  

rad/s 44.02053 =w  0.059333 =g  rad/s 44.0118 3 =w
 

05930.03 =g  

rad/s 50.94274 =w  0.031024 =g  rad/s 50.94184 =w  1000.034 =g  

 

Table 4. Eigenvalues for frame with classic Kelvin dampers ( 0.1=a ) 

Eigenvalues (exact results) Eigenvalues - Eq (27) 
Frequency 

[rad/s] 
Damping ratio 

9.9133 i 0.191795,1 ±-=s
 

9.88545 i 0.19196 5,1 ±-=s  9.915161 =w
 

 0.0193431 =g
 

28.114 i 2.3712 6,2 ±-=s
 

27.6169 i 2.31103 6,2 ±-=s
 

 28.21382 =w
 

0.0840442 =g
 

42.729 i5.75097,3 ±-=s
 

42.8072 i 5.738437,3 ±-=s
 

43.11423 =w
 

0.1333873 =g
 

49.919 i 3.45088,4 ±-=s
 

49.9294 i 3.452548,4 ±-=s
 

50.03814 =w
 

0.0689634 =g
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5. Concluding remarks 

The proposed method enables determination of the dynamic properties of structures 

with VE dampers in a simple way. The dampers’ behavior is described with the help of 

fractional derivatives. A partial solution to the classic eigenvalue problem is necessary in 

the proposed method. Only one eigenvector and the corresponding eigenvalue of 

problem (6) are necessary to determine the conjugated eigenvalue and eigenvector for 

the structure with VE dampers. The results of an extensive calculation, which is not 

presented in this paper due to the limitation of space, indicate that the accuracy of the 

method is good for a range of damper’s parameters used in practice. 

Table 5. Eigenvalues for frame with classic Kelvin dampers ( 0.1=a ) – comparison of 

the results obtained from Eq (24) (the Euler method) and Eq (27) 

Eigenvalues – Euler Eq ( 24) Eigenvalues - Eq (27) Differences 

9.91326 i 0.192505,1 ±-=s
 

9.88545 i 0.19196 5,1 ±-=s  0.28% i0.28% +  

 28.1094 i 2.35233= 6,2 ±-=s  27.6169 i 2.31103 6,2 ±-=s  % i78.1 i% 1.79 +  

42.7318 i 5.728227,3 ±-=s  42.8072 i 5.738437,3 ±-=s  % 18.0 i0.18%+  

50.1042 i 5.557768,4 ±-=s  50.3188 i 5.581688,4 ±-=s  0.43% i0.43%+  
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