PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Properties of Laser Additive Deposited of Nickel Base Super Alloy Inconel 625

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
  • Kielce University of Technology, Kielce, Poland
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • [1] Qingbo, J. & Dongdong, G. (2014). Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Optics & Laser Technology. 62, 161-171. DOI:https:// doi.org/10.1016/j.optlastec.2014.03.008.
  • [2] Baldridge, T., Poling, G. & Foroozmehr, E. & all. (2013). Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications. Optics and Lasers in Engineering. 51(2), 180-184. DOI:https://doi.org/10.1016/j.optlaseng.2012.08.006.
  • [3] Chongliang, Z., Kittel, J., Gasser, A. & Schleifenbaum, J.H. (2019). Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Optics & Laser Technology. 109, 352-360. DOI:https:// doi.org/10.1016/j.optlastec.2018.08.003.
  • [4] Carroll, B.E., Otis, R.A. & all. (2016). Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Materialia. 108, 46-54. DOI:https://doi.org/10.1016/j.actamat.2016.02.019.
  • [5] Caiazzo, F. (2018). Laser-aided Directed Metal Deposition of Ni-based superalloy powder. Optics & Laser Technology. 103, 193-198. DOI:https://doi.org/10.1016/j.optlastec. 2018.01.042.
  • [6] Węglowski, M.St., Błacha, S., Jachym, R., Dutkiewicz, J. & all. (2019). Electron and laser beam additive manufacturing with wire - comparison of processes. key engineering materials. 799, 294-299. DOI:https://doi.org/10.4028/ www.scientific.net/KEM.799.294.
  • [7] Huebner, J., Rutkowski, P., Kata, D. & Kusiński, J. (2017). Microstructural and mechanical study of inconel 625 – tungsten carbide composite coatings obtained by powder laser cladding. Archives of Metallurgy and Materials. 62(2), 531-538. DOI: 10.1515/amm-2017-0078.
  • [8] Gu, D.D., Meiners, W., Wissenbach, K. & Poprawe, R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews. 57(3), 133-164. DOI:10.1179/1743280411Y.0000000014.
  • [9] Antoszewski, B., Danielewski, H. (2018). Rapid prototyping using laser and a wire as an additional material - problem analysis. AIP Conference Proceedings. 020001. DOI:10.1063/1.5056264.
  • [10] Guijun, B., Chen-Nan, S. & all. (2014). Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Materials & Design. 60, 401-408. DOI:https://doi.org/10.1016/j.matdes.2014.04.020.
  • [11] Oliveira, M.M., Couto, A.A., Almeida, G.F.C. & others. (2019). Mechanical behavior of inconel 625 at elevated Temperatures. Metals. 301(9), 1-13. DOI: 10.3390/ met9030301.
  • [12] Wang, J.F., Sun, Q.J. & all. (2016), Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Materials Science and Engineering A. 676, 395-405. DOI:https://doi.org/10.1016/j.msea.2016.09.015.
  • [13] Kaczorowski, M., Skoczylas, P. & Krzyńska, A. (2015). Degradation of creep resistant ni - alloy during aging at elevated temperature part II: Structure Investigations. Archives of Foundry Engineering. 15(4), 45-50. DOI: 10.1515/afe-2015-0077.
  • [14] Pereira, F.G.L., Lourenco, J.M. & others. (2018). Fracture behavior and fatigue performance of inconel 625. Materials Research. 21(4), 1-13. DOI: http://dx.doi.org/10.1590/1980-5373-mr-2017-1089.
  • [15] Qin, L., Chen, C. & all. (2017). The microstructure and mechanical properties of deposited-IN625 by laser additive manufacturing. Rapid Prototyping Journal. 23(6), 1119-1129. DOI:https://doi.org/10.1108/RPJ-05-2016-0081.
  • [16] Petrzak, P., Kowalski, K. & others. (2018). Annealing efect on microstructure and chemical composition of Inconel 625 alloy. Metallurgy and Foundry Engineering. 44(2), 73-80. DOI: 10.7494/mafe.2018.44.2.73.
  • [17] Rombouts, M., Maes, G., Mertens, M. & Hendrix, W. (2012). Laser metal deposition of Inconel 625: Microstructure and mechanical properties. Journal of Laser Applications. 24(5), DOI:10.2351/1.4757717.
  • [18] Solecka, M., Kopia, A., Petrzak, P. & Radziszewska, A. (2018). Microstructure, chemical and phase composition of clad layers of inconel 625 and inconel 686. Archives of Metallurgy and Materials. 63(1), 513-518. DOI: 10.24425/118969.
  • [19] Shuai, L., Qingsong, W. & all. (2015). Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting. Journal of Materials Science & Technology. 31(1), DOI:10.1016/j.jmst.2014.09.020.
  • [20] Dinda, G.P., Dasgupta, A.K. & Mazumder, J. (2009), Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Materials Science and Engineering: A. 509, 98-104. DOI: 10.1016/j.msea.2009.01.009.
  • [21] Hong, Ch., Gu, D. Dai, D., Gasser, A. & all. (2013), Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Optics & Laser Technology. 54, 98-109. DOI:https://doi.org/10.1016/ j.optlastec.2013.05.011.
  • [22] Qi, H., Mazumder, J. & Ki, H. (2006). Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of Applied Physics. 100, 024903. DOI: 10.1063/1.2209807.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a94f88ab-f0e4-46da-84ec-cf1f4e4aee8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.