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1. Introduction

Statistical regression models are widely used in the analysis of 
reliability data. In the recent overview paper by Elsayed [2] these 
methods have been indicated as the principal tools in areas such as 
reliability prediction and accelerated life tests. In a similar overview 
dedicated to the problem of warranty data analysis Wu [18] gives ex-
amples of the applications of regression methods in this area. As sta-
tistical data coming from long-lasting life tests are seldom available, 
many attempts have been made to build mathematical models for the 
prediction of reliability basing on easily observed (or measured) char-
acteristics. For example, prediction models presented in the Military 
Handbook MIL-217F [15] link the most popular reliability character-
istic, namely the hazard rate λ, with many factors describing the object 
itself, the condition of its usage, etc. These models are based on the 
statistical analysis of large sets of reliability data collected over years 
by organizations such as the U.S. Army. The mathematical models 
that are used for prediction purposes in MIL-217F and other similar 
documents are usually obtained using classical regression methods. 
Consider, for example, the prediction of the base hazard rate of a trav-
elling wave tube. In the Notice 2 of the Military Handbook MIL-217F 
[16] the following formula is given for the calculation of the basic 

failure rate of such device ( ) ( )11 1,00001 1,1 ,P F
bλ = ⋅ ⋅ where  F is 

the operating frequency (in GHz), and P is the rated power (in Watts). 
When we take logarithms of both sides of this formula we arrive at a 
classical linear regression model that links the basic reliability char-
acteristic with the parameters of the considered device. The param-
eters of the models presented in [15] and [16] are somewhat obsolete 
because they were computed using data collected more than twenty 
years ago. However, the general formulae used in MIL 217F for the 
prediction purposes are still used (see, e.g., the recent papers by Lee 
and Lee [9] or by Thaduri et al. [14]).

The second important area of the theory and practice of reliability 
in which regression models are widely used is accelerated life testing. 
The two most important classes of models used for the description of 
the accelerated life tests, namely the accelerated failure time models 
(AFT) and the proportional hazard models (PH), belong to the class of 
regression models (see [2] for a short overview). Regression models 
are also used in other areas of reliability and risk analysis. For exam-
ple, Schneidewind [12] proposed a regression model for the predic-
tion of risk in software engineering.

In order to build prediction models it is necessary to evaluate the 
strength of statistical dependence between the characteristic of inter-
est and its best predictors. It is obvious that the values of good predic-
tors should be strongly associated with the values of the characteristic 
of interest. In mathematical statistics many measures of statistical de-
pendence exist, but Pearson’s coefficient of correlation r is the most 
popular among practitioners.  The reason of this stems from the fact 
that in nearly all popular software tools, such as spreadsheets or basic 
versions of statistical packages, Pearson’s coefficient of correlation r 
is the main measure used for the evaluation of regression models.

Pearson’s coefficient of correlation r (usually called simply “the 
correlation”) measures the strength of linear correlation between ran-
dom variables. In all statistical textbooks, readers are warned against 
the usage of this measure of dependence when the dependence be-
tween random variables is nonlinear. For example, in the case of two 
random variables X and Y=X2 defined on the whole space of real num-
bers, their linear correlation coefficient will be equal to zero despite 
the strongest possible (deterministic) relation. In practice however, 
one cannot easily recognize to what extent random variables are lin-
early dependent, even if the type of their bivariate probability dis-
tribution is known. It is well known from the theory of mathemati-
cal statistics that such linear dependence exists when the random 
variables are jointly distributed according to the multivariate normal 
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(Gaussian) distribution. When the assumption about the multivariate 
normality is not fulfilled one needs to use other measures of statistical 
dependence, such as Kendall’s coefficient of association τ or Spear-
man’s coefficient of rank correlation ρ. Unfortunately, a general theo-
ry that explains the links between Pearson’s coefficient of correlation 
r and nonparametric measures of dependence, such as Kendall’s τ or 
Spearman’s ρ does not exist. Therefore, the relationship between these 
measures of dependence is usually investigated in particular context. 
For example, Xu et. al. [19] consider the problem of the measurement 
of correlation in signal processing when measurements are described 
by contaminated normal models. A very interesting analysis is pre-
sented in the paper by Vořechovský [17] who considered the problem 
of the Monte Carlo simulation of interdependent random vectors.

Regression models can be built for practically all types of statisti-
cal data. However, their statistical properties as calculated by popular 
software or described in the majority of statistical textbooks are valid 
only for the data described by the normal distribution. When lifetime 
data are analyzed this assumption is fulfilled only in very few practi-
cal cases, as  lifetimes are seldom distributed according to the normal 
distribution. The situation is even worse when we build a regression 
model for the prediction of the hazard rate λ. In this case, the prob-
ability distribution of the predicted variable is never distributed ac-
cording to the normal distribution. Probability distributions encoun-
tered in reliability testing, such as the exponential, Weibull, gamma or 
log-normal distributions, are skewed, and the multivariate (bivariate 
in practice) normal (Gaussian) distribution should not be used for the 
modeling of statistical dependence between the characteristic of in-
terest and its predictors. Therefore, there is a need to investigate the 
behavior of Pearson’s correlation coefficient r when the underlying 
models of dependence are applicable in the context of reliability pre-
diction. This is the main aim of this paper.

The paper has the following structure. In its second section we 
recall some basic information about the methods for measuring the 
dependence between random variables. The main aim of this section 
is to highlight important restrictions for the usage of the coefficient 
of linear correlation. The third section of the paper is devoted to the 
analysis of the relations between the values of the coefficient of linear 
correlation and the values of other popular measures of statistical de-
pendence, such as Kendall’s coefficient of associationτ or Spearman’s 
coefficient of rank correlation ρ. Approximate formulae, based on the 
results of extensive Monte Carlo computer simulation experiments, 
which link the values of r with the values of other measures of de-
pendence are presented in the fourth section. 

2. Measuring of dependence between random vari-
ables

Let X and Y be random variables whose joint probability distribu-
tion is H(x,y). In this paper we assume that these variables have con-
tinuous marginal distributions F(x) and G(y) with finite expected val-
ues E(X), E(Y), and variances V(X), V(Y), respectively. Many such 
distributions have been proposed over the last one hundred years. 
Sklar [13] published his famous theorem which says that any two-
dimensional probability distribution function H(x,y) with marginal 
distributions F(x) and G(y) is represented using a function C, called a 
copula, in the following way:

 H x y C F x G y, ,( ) = ( ) ( )( )   (1)

for all x,y ∈ R.

Any function defined on a square unit 0 1 0 1, ,[ ]×[ ]  and such that:

 ( ) ( )0, ,0 0,C x C x= =

 C x C x x1 1 1 0 1, , , ,( ) = ( ) = ∈[ ] , and

C b d C a d C b c C a c a b c d a b c d, , , , , , , , , , ,( ) − ( ) − ( ) + ( ) ≥ ∈[ ] ≤ ≤0 0 1

is a copula. Conversely, for any distribution functions F and G and 
any copula C, the function H defined by (1) is a two-dimensional dis-
tribution function with marginals F and G. Moreover, if F and G are 
continuous, then the copula C is unique. 

Let u=F(x), and v=G(y). The simplest copula, the product copula 
( ),u v uvΠ = , describes independent random variables. All other bi-

variate copulas fulfill the Fréchet-Hoeffding inequalities:

 ( ) ( ) ( ) ( ) ( ), max 1,0 , min , ,W u v u v C u v u v M u v= + − ≤ ≤ =     (2)

The left inequality in (2) describes the case of full negative de-
pendence between X and Y, and the right inequality in this formula 
describes the case of full positive dependence between X and Y.

Sklar’s theorem has been generalized to the p-dimensional case, 
so it is applicable for any p-dimensional probability distribution. Sim-
ilarly, the Fréchet-Hoeffding inequalities have been also generalized 
for the p-dimensional case. However, in this more general setting all 
mathematical formulae describing multidimensional probability dis-
tributions become very complicated, and thus have limited usage for 
practitioners. Therefore, in this paper we restrict ourselves only to the 
two-dimensional (bivariate) case. 

The most popular measure of dependence between two random 
variables is based on the concept of the covariance defined for real 
valued random variables as:

 Cov X Y x E X y E Y f x y dxdy
Sxy

, ,( ) = − ( )( ) − ( )( ) ( )∫∫  (3)

where xyS is the area for which the bivariate probability density func-
tion ( ),f x y  is positive. When we divide the covariance by the prod-
uct of the standard deviations σ X( ) , and σ Y( )  of X and Y we arrive 
at the famous Pearson’s coefficient of linear correlation:

 r X Y
Cov X Y

X Y
,

,( ) =
( )

( ) ( )σ σ
 (4)

described in every textbook on probability and statistics. 

Let ( ), , 1, ,i ix y i n= 
 be the observed sample of n independent 

pairs of observations of the random vector (X,Y). The sample ver-
sion of Pearson’s coefficient of linear correlation is given by the well 
known formula:

 r
x x y y

x x y y
xy

i i
i

n

i
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n
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i

n
=

−( ) −( )

−( ) −( )

=

= =

∑

∑ ∑

1

2

1

2

1

. (5)

It is a well known that r(X,Y) describes only linear dependence 
between random variables, and thus should not be used for many bi-
variate probability distributions as the measure of dependence. For 
example, if X and Y are independent, than r(X,Y)=0, but the converse 
is not true. There exist many examples of highly dependent data for 
whom we observe no linear correlation (r(X,Y) is equal or very close 
to zero). It has been proven that Pearson’s coefficient of correlation 
fully describes the dependence structure only in the case of the bivari-
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ate normal (Gaussian) distribution. This distribution is the special case 
(for normal marginal distribution) of the normal copula defined as:

 C u v u v rN N, , ;( ) = ( ) ( )( )− −Φ Φ Φ1 1  (6)

where ΦN x y r, ;( )  is the cumulative distribution function of the bi-
variate standardized normal distribution with the correlation coeffi-
cient r, and Φ− ( )1 x  is the inverse of the cdf of the univariate stand-
ardized normal distribution (the quantile function). Pearson’s r may 
be also used as a measure of dependence for random variables that are 
jointly elliptically distributed. To this class of probability distributions 
belong the aforementioned multivariate Gaussian distribution, the 
multivariate t-distribution, and other distributions whose multivariate 
characteristic function can be represented as a certain quadratic form. 
However, even in the case of the elliptical distributions Pearson’s r 
has meaning only for the distributions with finite variances.

Another popular measure of dependence is Spearman’s coeffi-
cient of rank correlation. Let ( ) ( ) ( )1 2 nx x x≤ ≤ ≤  and 

( ) ( ) ( )1 2 ny y y≤ ≤ ≤  be the ordered elements of ( ), , 1, ,i ix y i n=  , 

and let 1 2 nR R R≤ ≤ ≤  and 1 2 nS S S≤ ≤ ≤ be the ranks of the 
original observations 1, nx x  and 1, ny y in this ordering. Spear-
man’s coefficient of rank correlation is the coefficient of linear cor-
relation calculated for these ranks, and is given by the formula:

 ρxy

i
i

n
d

n n
= −

−( )
=
∑

1
6

1

2

1
2

, (7)

where:
 , 1, ,i i id R S i n= − =  . (8)

It has been proved, see Nelsen [10], that the population version of 
Spearman’s ρ can be found for any copula using the following for-
mula:

 ρ X Y C u v dudv, ,
,( ) = ( ) −[ ]∫∫12 3

0 1 2 . (9)

Kendall’s rank correlation coefficient, known as Kendall’s τ, was 
proposed in 1938, and is based on the concept of concordant and dis-
concordant pairs of observations. A pair of vector observations x yi i,( )
, and x yj j,( )  of continuous random variables (X,Y) is concordant if 
the respective ranks of the elements of both vectors agree, i.e either 

i jR R> and i jS S>  or i jR R< and i jS S< . Otherwise, this pair is 
disconcordant. The sample version of Kendall’s τ is defined as:

 τ xy n
= 2 no. of concordant pairs - no. of disconcordant pairs

nn −( )1
.     (10)

A convenient representation of τ has been proposed by Genest and 
Rivest [7] in the following form:

 τ xy i
i

n

n
V= −

=
∑4 1

1
,  (11)

where:

 V card X Y X X Y Y n i ni j j j i j i= ( ) < <{ } −( ) =, : , , , ,1 1 .  (12)

The population version of Kendall’s τ can be found, see Nelsen [10], 
for any copula using the following formula:

 τ X Y C u v dC u v, , ,
,( ) = ( ) ( ) −[ ]∫∫4 1

0 1 2 . (13)

Many other measures of dependence exist, described for instance 
in the book by Nelsen [10] or in the paper by Embrechts et al. [3]. 
Some of these measures are called the measures of concordance. 
Scarsini [11] defines a measure of concordance as a real valued mea-
sure of dependence κ between two continuous random variables X and 
Y whose copula C satisfies the following properties:

 1. κ  is defined for every pair X; Y of continuous random variables.

− ≤ ≤1 1κ X Y,2. 
, κ X X, = 1  and κ X X,− = −1 .

κ κX Y Y X, ,=3. 
.

If 4. X and Y are independent, then κ X Y, = 0 .

κ κ κ− −= = −X Y X Y X Y, , ,5. 
.

If 6. C and C  are copulas such that C C≤  , then κ κC C≤


.
If {(7. Xn; Yn)} is a sequence of continuous random variables with 
copulas Cn, and if {Cn} converges pointwise to C, then 
lim

n
C Cn→∞

=κ κ .

Spearmans ρ and Kendall’s τ are measures of concordance (the 
proof can be found in the book by Nelsen [10]), but Pearson’s r is not 
(as it is shown in the paper by Embrechts et al. [3]). It does not fulfill 
the condition 2., and the range of possible values of r depends upon 
the type of marginal distributions of dependent random variables X 
and Y. Below, we show some important properties of Pearson’s r re-
garding this property.

Let us consider two continuous random variables X and Y de-
scribed by the probability density functions f(x) and g(y), respectively. 
Without loss of generalization let us assume that E(X)= E(Y)=E, and 
Var(X)= Var(Y)=1. Because Pearson’s r is invariant with respect to 
linear transformations, transforming the original random variables to 
the variables defined above does not change the value of r which in 
this case is equal to the covariance between X and Y. 

Now, let us consider the two limiting cases defined by (2). In the 
case of full negative dependence random variables X and Y are linked 
functionally in the following way:

 F x G y( ) = − ( )1 . (14)

where F(x) and G(x) are the respective cumulative probability func-
tions of the random variables X and Y. Hence, the covariance between 
X and Y is given by:

 Cov X Y x E G F x E f x dxneg ,( ) = −( ) − ( ) { } −( ) ( )−
−∞
∞

∫ 1 1     (15)

where G x− ( )  is the inverse (the quantile function) of G(x). 
In the case of full positive dependence the link is of the form:

 F x G y( ) = ( ) , (16)

 and a similar formula is given by:

 Cov X Y x E G F x E f x dxpos ,( ) = −( ) ( ) { } −( ) ( )−
−∞
∞

∫ 1     (17)
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The formulae (15) and (17) can be used for the calculation of the 
limiting values, rmin and rmax, of Pearson’s r. From the analysis of 
these formulae we can derive the following properties of Pearson’s r.

Property 1: When the probability distributions of X and Y have the 
same shape, then rmax=1.

Proof: The proof of this property if straightforward. The same shape of 
two probability distributions means that after appropriate transforma-
tions of scale and location we have F(x)=G(y). Hence, G F x x− ( )  =1  
and Cov X Y Var Xpos ,( ) = ( ), and thus r X Y r, max( ) = = 1.

Property 2: When probability distributions of X and Y are symmetric 
around zero (E=0) and have the same shape, then rmin= − 1.

Proof: For symmetric distributions, with E=0, we have

G x G x− −−( ) = − ( )1 1 . Thus, for distributions with the same 

shape we G F x G F x x− −− ( )( ) = − ( )( ) = −1 11 . Then, we have 

Cov X Y Var Xneg ,( ) = − ( ) , and thus r X Y r, min( ) = = −1 .

Property 3: When at least one of the random variables has a sym-

metric distribution, then min maxr r= − .

Proof: Let Y be the random variable with a symmetric distri-

bution, then G F x G F x− −− ( )( ) = − ( )( )1 11 , Hence, we have 

Cov X Y Cov X Ypos neg, ,( ) = − ( ) , and consequently min maxr r= − .

With the exception  of cases when Properties 1 and 2 hold, the 
calculation of rmin and rmax is usually difficult. 

Example 1
Consider the case when both X and Y have the same exponential 

distribution with E=1. Because the variance in the exponential distri-
bution is the same as the expected value we have in the considered 
case r X Y Cov X Y, ( , )( ) = . Then, the formula (15) takes the follow-
ing form:

r Cov X Y x e e dxneg
x x

min , ln ,= ( ) = −( ) − −



{ } −( ) = − = −−∞

∫ 1 1 1 1
6

0 6
0

2π 444934.  (18)

The integral in (18) has been evaluated using symbolic and numerical 
calculations provided by the mathematical package Mathematica™.

Example 2

Consider the case when X is distributed according to the expo-
nential distribution with E=1, and Y is uniformly distributed over the 
interval [-0,5 , 0,5]. The maximal value of the Cov(X,Y) is now:

Cov X Y x e e dx e e xpos
x x x x, |( ) = −( ) −( ) = −( ) +





−∞ − −∫ ∞1 1 1
4

4 2 1
0

2
0 == 1

4
.   (19)

Hence, max 3 2 0,866r = = , and, by the Property 3, min 0,866r = − .

When the random variables X and Y are distributed according to 
the reliability distributions such as the Weibull or the Log-normal, 
which are so popular in theory and in practice, the calculation of the 
minimal or maximal values of Pearson’s r can be done only numeri-
cally or by simulations. However, the numerical integration can, in 

this case, be very difficult, as the integrated functions may adopt in-
finite values at zero. For this reason, the Monte Carlo simulations, 
described in the next section of this paper, seem to be a better way to 
find these values.

3. Properties of Pearson’s r

It is well known that the values of Pearson’s r depend upon the 
type of the marginal distributions of a bivariate random variable. In 
the previous section we have shown how the range of possible values 
of r depends upon the shape of these marginals. More questions, im-
portant from a practical point of view, could be asked. In this paper we 
will try to answer some of them, and namely:

How the values of a. r depend upon the type of marginal distribu-
tions in the case of distributions used in reliability practice?
Do the properties of b. r depend upon the type of dependence 
described by some popular copulas?
What is the relationship between the values of c. r and the values 
of other measures of dependence, such as Kendall’s τ or Spear-
man’s ρ?
What is the accuracy of the estimation of different measures of d. 
dependence?

For these, and many other similar questions, the answers cannot 
be found using analytical methods. Therefore, we have performed 
extensive computer simulations and analyzed samples of different 
size, generated from different copulas with different marginal distri-
butions.

We have considered four types of copulas. The first one, the normal 
(Gaussian) copula have been already introduced, and defined by (6). 
The remaining three copulas belong to the family of the Archimedean 
copulas defined by Genest and McKay [6] in the following way:

 C u v u v,( ) = ( ) + ( )( )−ϕ ϕ ϕ1 , (20)

where ϕ−1  is a pseudo-inverse of the continuous and strictly decreas-

ing function ϕ : , ,0 1 0[ ] → ∞[ ], called copula’s generator, such that 

ϕ 1 0( ) = . From this family we have taken the following three well 
known copulas:

 a. Clayton copula (Clayton [1]), defined as:
 

 C x y F x G, , , \( ) = ( ) + −



 ∈ − ∞( ) { }{ }− − −θ θ θ θ1 1 0

1
,     (21) 

 b. Frank copula (Frank [4]), defined as:

 C x y
e e

e

F x G y

, ln , ,( ) = − +
−( ) −( )

−

















∈ −∞ ∞

− ( ) − ( )

−
1 1

1 1

1θ
θ

θ θ

θ (( ) { }{ }\ 0 , (22)

 c. Gumbel copula (Gumbel [8]), defined as:

 C x y F x G y, exp ln ln ,( ) = − − ( )( ) + − ( )( )

















>
θ θ θ

θ
1

0 .  (23)

One of the reasons for using these particular copulas is the relative 
ease of the computer simulation of samples from these copulas for the 
given strength of dependence defined by Kendall’s τ. For the normal 
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copula, popular algorithms can be used for this purpose for the simu-
lation of samples from a classical bivariate normal distribution, and 
for the remaining three copulas we used a general algorithm proposed 
by Genest and McKay [6] for the Archimedean copulas.

For the measure of dependence in the simulated samples we use 
Kendall’s τ. For this measure of dependence there exist formulae that 
link the value of τ with the parameters of the copulas. These links 
depend only on the type of copula, and because of a non-parametric 
character of Kendall’s τ do not depend upon the type of marginals. For 
the normal (Gaussian) copula the following relation holds:

 τ π= ( ) ( )arcsin / /r 2 . (24)

For the chosen Archimedean copulas we have the following for-
mulae:
 a. Clayton copula

 τ
θ

θ
=

+ 2
, (25)

 b. Frank copula

τ
θ

θθ
= +

−
−






∫1 4 1

1
1

0
t

e
dtt ,       (26)

 c. Gumbel copula

 τ
θ

θ
=

+1
.                    (27)

We see that except for the case of Frank copula, 
when we have to solve for θ a very complicated 
equation, the dependence parameter of a given cop-
ula is straightforwardly related to the value of Ken-
dall’s τ. Such simple relationships do not exist for 
Spearman’s ρ, so we have chosen Kendall’s τ as the 
measure of dependence in the simulated samples.

In order to investigate the influence of the type 
of the marginal distribution on the value of Pear-
son’s r we considered two cases. In the first one 
we assumed that both variables X and Y have the 
same marginal distribution: normal, exponential 
and Weibull (with different parameters of shape δ). 
In the second case, that seems to be more appropri-
ate as regards problems of reliability prediction, we 
have assumed that the predictor X has the normal 
distribution, and Y is distributed according to dif-
ferent Weibull distributions (the exponential distri-
bution included).

The properties of the considered statistics de-
pend on the sample size n. In our simulation ex-
periments we considered three values of n: n=500, 
which allow the approximation of the values of the 
population (theoretical) versions of the measures of 
dependence, n=100, which represents the case of a 
relatively accurate estimation of this measure, and 
n=20, which represents the sample size more ap-
propriate for the analysis of reliability.

We have simulated 1000000 samples in each of 
the simulation experiments. Therefore, the results 

of the experiment are very accurate, and the impact of the randomness 
of the Monte Carlo methodology can be neglected.

The results of experiments have been summarized in respective 
tables. In this paper we present only few of them, showing the results 
only for some chosen values of Kendall’s τ. Table 1 represents the 
results of one of the simulation experiments where the Clayton copula 
with given marginals, normal N(0,1) for X, and Weibull W(1,5) for 
Y, was used as the mathematical model. In this experiment samples 
of n=100 elements were generated for 22 different values of τ, and 
for each value of τ the respective value or r was estimated from the 
results of simulation. The consecutive columns of this table represent: 
the assumed value of Kendall’s τ, the estimated mean value of Kend-
all’s τ, the estimated mean value of Spearman’s ρ, the estimated mean 
value of Pearson’s r, the estimated standard deviation of Kendall’s τ, 
the estimated standard deviation of Spearman’s ρ, and the estimated 
standard deviation of Pearson’s r, respectively. 

In Table 2 we present the results of the simulation experiment 
when dependence is described by the normal (Gaussian) copula. Note, 
that in this case the random vector (X,Y) does not have a bivariate nor-
mal distribution, as its second component (Y) is distributed according 
to the Weibull distribution with the shape parameter δ=1,5.

Table 1. X – N(0,1), Y – Weibull (1,5), Clayton copula, n=100

TAU TAU-esT rHO-sp r-peArs siG-TAU siG-rHO siG-r

1 1 1 0,966172 0 0 0,0084

0,9 0,899987 0,981913 0,919786 0,015427 0,005713 0,022431

0,7 0,699994 0,868551 0,780478 0,038352 0,032555 0,043463

0,5 0,500009 0,676824 0,602098 0,054615 0,063348 0,065445

0,3 0,300006 0,430006 0,386769 0,064561 0,087601 0,085434

0,1 0,099982 0,147826 0,135595 0,0683 0,099877 0,098458

0 0,000009 0,000018 0,000000 0,067926 0,100639 0,100626

-0,1 -0,10004 -0,14776 -0,13675 0,066267 0,097949 0,099825

-0,3 -0,30002 -0,42179 -0,38989 0,061608 0,086718 0,094286

-0,5 -0,5 -0,64362 -0,59994 0,057632 0,072373 0,084198

-0,7 -0,69998 -0,81401 -0,76949 0,051404 0,054946 0,0679

-0,9 -0,89995 -0,94535 -0,907 0,03438 0,030933 0,040685

-1 -1 -1 -0,966157 0 0 0,008387

Table 2. X – N(0,1), Y – Weibull (1,5), Normal copula, n=100

TAU TAU-esT rHO-sp r-peArs siG-TAU siG-rHO siG-r

1 1 1 0,966172 0 0 0,0084

0,9 0,899992 0,983882 0,954148 0,012531 0,004014 0,008852

0,7 0,699955 0,876410 0,859881 0,032894 0,026777 0,022927

0,5 0,499934 0,684427 0,681280 0,049546 0,057634 0,051623

0,3 0,299910 0,433129 0,436664 0,061163 0,083980 0,080477

0,1 0,099936 0,147973 0,150245 0,067111 0,098637 0,098170

0 0,000009 0,000018 0,000000 0,067926 0,100639 0,100626

-0,1 -0,100051 -0,148130 -0,150423 0,067128 0,098671 0,098221

-0,3 -0,300033 -0,433290 -0,436767 0,061215 0,084050 0,080566

-0,5 -0,500011 -0,684503 -0,681312 0,049594 0,057687 0,051656

-0,7 -0,700006 -0,876442 -0,859885 0,032900 0,026783 0,022923

-0,9 -0,899994 -0,983882 -0,954148 0,012528 0,004013 0,008851

-1 -1 -1 -0,966157 0 0 0,008387
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From the first two columns of Table 1 and Table 2 one can have 
the impression that the estimates of Kendall’s τ obtained from the 
generated samples are unbiased. Their average values (over 1000000 
simulation runs) are practically the same as their assumed values. 
This has been confirmed in all simulation experiments, also for small 
samples of n=20 elements. This could serve as the proof that the al-
gorithms used for the generation of data from different copulas work 
correctly.

The comparison of the third and the fourth col-
umns of Table 1 and Table 2 shows different rela-
tion between Kendall’s τ , Spearman’s ρ, and Pear-
son’s r. This reflects the influence of the type of 
copula. In the case of the Clayton copula the values 
of ρ and r are not symmetric with respect to the 
case of independence, where all dependence meas-
ures should have the value of zero. However, for the 
normal copula this symmetry is visible. The same 
situation is observed, but with lower intensity, for 
the observed standard deviations of the considered 
measures of dependence.

In Table 3 we present the results of simulations 
from the Clayton copula, but with a different, as 
compared to the case presented in Table 1, marginal 
distribution of distribution of Y, namely the Weibull 
distribution with the shape parameter δ=2,0. The 
seed of the generator of random numbers was the 
same in all performed simulations, so it is possible 
to compare their results directly. The comparison of 
the second and the third columns of Table 1 and 
Table 3 shows that the average values of Kendall’s 
τ and Spearman’s ρ are, because of non-parametric 
character of these statistics, exactly the same. How-
ever, the values of Pearson’s r are slightly different 
in the both cases. This confirms the well-known 
fact that the values of r depend upon the type of the 
marginal distributions. What seems to be important 
from a practical point of view is the observation 
that in the cases in which the marginal distributions 
are not very different with respect to their skewness  
the values of Pearson’s r are not very different.

The properties of Pearson’s r are completely 
different in the case presented in Table 4 where the 
data were generated from the Frank copula, and 
the marginal distribution of Y was highly skewed 
(the Weibull distribution with the shape parameter 
δ=0,5). The behavior of Spearman’s ρ in compari-
son to the cases presented in Tables 1 – 3 was simi-
lar, and the differences observed could be neglected 
from a practical point of view. However, the behav-
ior of Pearson’s r is completely different. First of 
all, the absolute minimal and maximal values of r 
are much smaller than 1, as is the case in the bi-
variate normal distribution. Therefore, they may be 
completely misleading when this measure of de-
pendence will be used for the analysis of strongly 
dependent data.

The most important difficulty with the usage of 
Pearson’s r is its dependence upon the type of mar-
ginal distributions. One can ask, however, about the 
practical impact of the distributions used to the prob-
lem of reliability prediction on the range of possible 
values of Pearson’s r. In order to investigate this 
problem we have assumed that the random variable 
X is distributed according to the normal distribution 

N(0,1), and the random variable Y, which in the context of reliability 
prediction describes the life-time, is distributed according to different 
Weibull distributions, the exponential distribution included. We have 
searched for the minimal and maximal possible values of r, defined 
by (15) and (17), respectively. These two values have been evaluated 
in the Monte Carlo experiments in which samples of 100, 500, and 
1000 items each were simulated in 1000000 runs. The results of this 
experiment are presented in Table 6.

Table 3. X – N(0,1), Y – Weibull (2,0), Clayton copula, n=100

TAU TAU-esT rHO-sp r-peArs siG-TAU siG-rHO siG-r

1 1 1 0,986855 0 0 0,004596

0,9 0,899987 0,981913 0,947121 0,015431 0,005713 0,015718

0,7 0,699994 0,868551 0,816918 0,038351 0,032555 0,038158

0,5 0,500009 0,676824 0,639403 0,054615 0,063348 0,062774

0,3 0,300006 0,430006 0,415361 0,064561 0,087601 0,085563

0,1 0,099982 0,147826 0,146231 0,0683 0,099877 0,099399

0 0,000009 0,000018 -0,000009 0,067926 0,100639 0,100629

-0,1 -0,10004 -0,14776 -0,14625 0,066267 0,097949 0,098495

-0,3 -0,30002 -0,42179 -0,4108 0,061608 0,086718 0,090795

-0,5 -0,5 -0,64362 -0,62437 0,057632 0,072373 0,079514

-0,7 -0,69998 -0,81401 -0,79356 0,051405 0,054946 0,063075

-0,9 -0,89995 -0,94535 -0,929 0,034378 0,030933 0,037035

-1 -1 -1 -0,98685 0 0 0,004588

Table 4. X – N(0,1), Y – Weibull (0,5), Frank copula, n=100

TAU TAU-esT rHO-sp r-peArs siG-TAU siG-rHO siG-r

1 1 1 0,719517 0 0 0,050144

0,9 0,899983 0,984952 0,674247 0,010692 0,003174 0,079032

0,7 0,699959 0,881641 0,565369 0,029395 0,023669 0,084575

0,5 0,499958 0,688860 0,434077 0,047261 0,055943 0,086974

0,3 0,299965 0,434539 0,274331 0,060343 0,083666 0,093489

0,1 0,099955 0,148060 0,093864 0,067048 0,098664 0,099509

0 0,000009 0,000018 0,000017 0,067926 0,100639 0,100577

-0,1 -0,100040 -0,148174 -0,093847 0,067086 0,098728 0,099595

-0,3 -0,300027 -0,434610 -0,274362 0,060460 0,083831 0,093634

-0,5 -0,499991 -0,688871 -0,434205 0,047386 0,056102 0,087096

-0,7 -0,699970 -0,881636 -0,565504 0,029461 0,023723 0,084793

-0,9 -0,899982 -0,984951 -0,674239 0,010700 0,003183 0,079138

-1 -1 -1 -0,71946 0 0 0,050233

Table 5. X – N(0,1), Y – Exponential, Gumbel copula, n=100

TAU TAU-esT rHO-sp r-peArs siG-TAU siG-rHO siG-r

1 1 1 0,909318 0 0 0,017728

0,9 0,899655 0,98295 0,901015 0,013871 0,004802 0,017174

0,7 0,69967 0,870859 0,829142 0,036312 0,030757 0,026007

0,5 0,499642 0,676797 0,682615 0,053541 0,062524 0,054827

0,3 0,299587 0,428082 0,461994 0,064564 0,087684 0,090058

0,1 0,09965 0,14718 0,170754 0,068657 0,100141 0,109652

0 0,000009 0,000018 0,000011 0,067926 0,100639 0,100616
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In this experiment one of the variables has a symmetric distribu-
tion, so according to the Property 3 the absolute values of rmin and rmax 
are the same. This has been confirmed in our experiments. Moreo-
ver, it appears from Table 6 that the range of possible values of r 
differs from the range expected for good measures of dependence, 
namely [−1,1] only in cases of highly skewed distributions, such as 
the Weibull with the parameter of shape equal or smaller than 1 or the 
exponential distribution. However, in the case of distributions with 
the increasing hazard rate the range of the possible values of r is close 
to [−1,1]. This is not unexpected as with the increasing value of the 
parameter of shape the Weibull distribution tends to the normal distri-
bution for whom Pearson’s r is the proper measure of dependence.

The situation becomes different when both dependent random 
variables have skewed distributions. In Table 7 we present the results 
of simulation for several such distributions.

The results presented in Table 6 and Table 7 show beyond doubt 
that the evaluation of the strength of dependence using Pearson’s r 
in the case of skewed distributions may be highly misleading. In ex-
treme cases the absolute values of r may be very small even in the 
case of very strong dependence. Therefore, in such cases, Pearson’s 
r cannot be used for find-
ing characteristics that 
can be used as good pre-
dictors of life-times. It 
is extremely important 
when observed life-times 
come from highly acceler-
ated life tests (HALT). In 
these tests early failures of 
“weak” elements are fre-
quently observed with the 
consequence of observing 
highly skewed life-time 
distributions.

The results of the sim-
ulation experiments have 
shown another unwanted 
property of Pearson’s r. 
The estimator of r seems 
to be highly biased even 
for large sample sizes.  In 
the Table 6 and Table 7 
we see this phenomenon 
for the extreme values of 
Pearson’s r. However, in 
practice we are more in-
terested in the analysis of 
this bias for smaller grades 
of dependence. In Table 8 
we present the comparison 
of the estimated values of 
r for different copulas, dif-

ferent marginal distributions, and dif-
ferent sample sizes.

4. Approximate relationships 
between the values of different 
measures of dependence

We will estimate the unknown 
relationship between Pearson’s r and 
Kendall’s τ from the simulation data 
using a polynomial:

 r wa i
i

i

k
τ τ( ) =

=
∑

0
, (28)

with additional conditions r L ra a−( ) = ( ) =1 0 0, , and r Ua 1( ) = . 
When we take k=6 after some simple algebra we obtain the following 
regression equation:

 r a fa i i
i

τ τ( ) = ( )
=
∑

0

4
, (29)

where a0=1, and:

 f U U L0
5 2 1 2τ τ τ τ( ) = + −( ) −( )  / , (30)

 f1
41τ τ τ( ) = −( ) , (31)

 f2
2 41τ τ τ( ) = −( ) , (32)

Table 6. Minimal and maximal values of Pearson’s r. One distribution symmetric

Distrib.
X

Distrib.
y

n=100 n=500 n=1000

rmin rmax rmin rmax rmin rmax

n(0,1) weib(0,2) -0,4407 0,4407 -0,3297 0,3298 -0,2949 0,2950

n(0,1) weib(0,5) -0,7195 0,7195 -0,6864 0,6864 -0,6796 0,6796

n(0,1) exp -0,9093 0,9093 -0,9045 0,9045 -0,9039 0,9039

n(0,1) weib(1,5) -0,9662 0,9662 -0,9647 0,9647 -0,9646 0,9646

n(0,1) weib(2,0) -0,9869 0,9869 -0,9863 0,9863 -0,9862 0,9862

n(0,1) weib(2,5) 0,9951 0,9951 -0,9949 0,9949 -0,9949 0,9949

Table 7. Minimal and maximal values of Pearson’s r. Both distributions asymmetric

Distrib.
X

Distrib.
y

n=100 n=500 n=1000

rmin rmax rmin rmax rmin rmax

weib(0,2) weib(0,2) -0,043138 1 -0,018837 1 -0,014069 1

weib(0,2) weib(0,5) -0,104550 0,876690 -0,063580 0,804192 -0,054084 0,771048

weib(0,5) exp -0,430280 0,924765 -0,393422 0,905902 -0,386876 0,901267

exp weib(1,5) -0,773163 0,983631 -0,762072 0,982289 -0,760580 0,982088

exp weib(2,0) -0,830921 0,960043 -0,821939 0,957323 -0,820714 0,956929

weib(1,5) weib(2,5) -0,938714 0,985191 -0,935726 0,984522 -0,935335 0,984433

Table 8. Expected values of the estimator of r

copula X y τ n=20 n=100 n=500 n=1000

clayton n(0,1) weib(0,5) 0,8 0,652802 0,55909 0,52084 0,513599 

0,5 0,414688 0,35028 0,32491 0,32020

-0,5 -0,44616 -0,39468 -0,37105 -0,36645

-0,8 -0,66799 -0,60190 -0,57096 -0,56473

Frank n(0,1) weib(0,5) 0,8 0,71270 0,62183 0,58206 0,574378

0,5 0,50179 0,43408 0,40502 0,399476 

-0,5 -0,50208 -0,43421 -0,40497 -0,39943

-0,8 -0,71270 -0,62187 -0,58203 -0,57423 

Gauss exp exp 0,8 0,93886 0,94148 0,94205 0,942104

0,5 0,66083 0,66647 0,66775 0,667828 

-0,5 -0,53688 -0,50238 -0,49300 -0,49175 

-0,8 -0,69748 -0,63947 -0,62491 -0,62299 
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 f3
3 21τ τ τ( ) = −( ) , (33)

 f4
4 21τ τ τ( ) = −( ) . (34)

Coefficients a1, a2, a3, and a4 of (29) have been obtained for differ-
ent copulas, and different marginal distributions using a standard line-
ar regression methodology for simulated samples of n elements. They 
are presented in Tables 10 – 12 for n=100, and the case of the normal 
N(0,1) distribution for one random variable, and the Weibull(δ) distri-
bution, where δ is the shape parameter, for the second one.

The approximate relationship between Pearson’s r and Kendall’s τ  
enables us to analyze the impact of the type of a marginal distribution on 
r. Figure 1 presents functions r(τ) for the Clayton copula when the mar-
ginal distribution of the first random variable X is normal N(0,1) and the 
marginal of the second variable Y are those represented in Table 10.

For the most skewed distribution (Weibull with the shape parameter 
equal to 0,5) the relationship is nearly linear. When the marginal become 
more symmetric this relationship becomes more non-linear, concave for 
the positive dependence, and convex for the negative one.

Figure 2 presents the same relationship in the case of the Frank 
copula. The general properties of this relationship are the same as 
in the case of the Clayton copula. However, in the case of the most 

skewed marginal the function r(τ) is slightly more non-linear than in 
the case of the Clayton copula.

Figure 3 presents the same relationship in the case of the Gauss 
(normal) copula. In the case of the Gauss (normal) copula the general 
properties of the function r(τ) are the same as in the case of previous 
copulas. However, this function is more non-linear than in the case of 
other copulas considered.

In the case of the Gumbel copula we have only two restrictions 

r U ra a1 0 0( ) = ( ) =, . Hence, the regression formula takes the fol-

lowing form:

 r U aa i
i i

i
τ τ τ τ( ) = + −( )−

=
∑6 6

1

5
1 . (35)

The coefficients a1, a2, a3, a4, and a5, estimated from the simula-
tion data are presented in Table 13.

Function r(τ) for the case of the Gumbel copula 
is presented on Figure 4. For all the copulas consid-
ered in this case, this function is clearly the most 
non-linear (concave), even in the case of the most 
skewed Weibull distribution. The relationship be-
tween Pearson’s r and Kendall’s τ is approximately 
linear only in the case of weak dependency between 
considered random variables.

The approximations given by (29) and (35) are 
very accurate, as their accuracy measured using the 
R2 statistic is close to 1. However, the usage of a 
simple regression technique does not guarantee in 
every case that the function ra(τ) is monotonously 
increasing, as it should be. Therefore, it is possible 
to find a better approximation solving the required 
optimization problem with linear constraints im-
posed on the values of derivatives. This can be done 
using specialized optimization software.

The impact of the type of copula on the relation-
ship between Pearson’s r and Kendall’s τ is present-
ed in Figures 5 and 6. In Figure 5 we present this re-
lationship when one of the two dependent variables 
is symmetric, N(0,1), and the second one is highly 
asymmetric, such as the Weibull(0,5). In Figure 6 
we present the similar relationship when the second 
variable is characterized by only weak asymmetry, 
such as the Weibull(2,5). In both Figures we present 
the results of 1000000 simulations of the samples of 
100 elements.

From these Figures one can see that in the case 
of highly asymmetric distributions the type of copula 
plays an important role. For the Clayton copula the 
function r(τ) is nearly linear. For the Frank copula 
it is not so far from being linear. However, for the 
Gauss (normal) copula, and especially for the Gum-
bel copula r(τ) is visibly non-linear. However, in the 
case of weakly asymmetric distributions this role is 
visible to a certain rather low degree only in the case 
of strong negative dependency. For all considered 
copulas the function r(τ) is non-linear, but this non-

linearity is not very strong.
One of the most important characteristics of any statistical meas-

ure is its variability, measured by its variance or standard deviation. 
When the value of a statistical measure is bounded, the comparison of 
variability of different measures is not so straightforward, as for the 
same data, i.e. while the data dependent in the same way, the values 
of the measures of dependence may be quite different. Because of the 

Table 10. Coefficients of the polynomial approximation. Clayton copula, n=100

coefficient weibull(0,5) exponential weibull(1,5) weibull(2,0) weibull(2,5)

a1 0,7630 1,155342 1,33729 1,420882 1,473745

a2 -0,1367 -0,0766 -0,02122 0,029073 0,059246

a3 -0,08325 -0,34399 -0,55061 -0,64906 -0,7292

 a4 0,206633 0,182692 0,105321 0,007765 -0,05032

Table 11. Coefficients of the polynomial approximation. Frank copula, n=100

coefficient weibull(0,5) exponential weibull(1,5) weibull(2,0) weibull(2,5)

a1 0,939852 1,285098 1,387229 1,426354 1,499399

a2 -0,00049 -0,00041 0,000288 -0,00042 0,130106

a3 -0,30958 -0,42447 -0,45036 -0,47068 -0,63732

a4 0,001063 0,000884 -0,001 0,000948 -0,34511

Table 12. Coefficients of the polynomial approximation. Gauss (normal) copula, n=100

coefficient weibull(0,5) exponential weibull(1,5) weibull(2,0) weibull(2,5)

a1 1,123037 1,420301 1,509639 1,542201 1,557253

a2 0,000281 -0,00013 -0,00031 -0,00035 0,002749

a3 -0,44679 -0,56673 -0,60338 -0,61684 -0,63445

a4 -0,00064 0,00031 0,000842 0,00091 -0,01628

Table 13. Coefficients of the polynomial approximation. Gumbel copula, n=100

coefficient weibull(0,5) exponential weibull(1,5) weibull(2,0) weibull(2,5)

a1 1,676811443 1,787641617 1,763614843 1,727108377 1,695654409

a2 -1,153926307 -0,817938091 -0,642773387 -0,540317764 -0,477612328

a3 0,378567463 0,054332151 -0,082513834 -0,133359319 -0,151628861

a4 -0,703818956 -0,360658976 -0,153403961 -0,084205969 -0,063509321

a5 0,847882638 0,347773779 0,107779315 0,016341698 -0,014938649
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bounds on these values the variance of the measures whose 
values are closer to the bounds should be smaller. When we 
analyze the relationship between Pearson’s r and Kendall’s τ 
we can see that for highly skewed marginal distributions the 
absolute values of τ are greater than the values of r estimated 
from the same sample. Therefore, the observed variability of τ 
should be smaller than the observed variability of r. However, 
in the case of the more symmetric marginal distributions the 
values of r should be greater than the values of τ. Therefore, in 

Fig. 1. Approximate relationship r(τ) – Clayton copula

Fig. 3. Approximate relationship r(τ) – Gauss (normal) copula

Fig. 5. Approximate relationship r(τ) – X- normal, Y – Weibull(0,5).

Fig. 4. Approximate relationship r(τ) – Gumbel copula

Fig. 6. Approximate relationship r(τ) – X- normal, Y – Weibull(2,5).

Fig. 2. Approximate relationship r(τ) – Frank copula

Table 14. Comparison of the average values of standard deviations of r and τ (n=100)

copula n(0,1) + weibull (0,5) n(0,1) + weibull (2,5)

στ σr στ σr

clayton 0,022642 0,066985 0,047049 0,061169

Frank 0,040049 0,085868 0,040058 0,051757

Gauss (normal) 0,041423 0,071539 0,041423 0,049027

Gumbel 0,048311 0,07789 0,048311 0,064361
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the case of similar variability 
of both measures of depend-
ence the observed variability 
of r should be smaller than the 
observed values of τ. In order 
to verify this supposition we 
calculated the average values 
of standard deviations of the 
estimated values of τ and r, 
respectively. In Table 14 we 
present this comparison for 
two cases. In the first, the 
marginal distribution of X is 

normal, and the marginal distribution of Y is the Weibull distribution 
with the shape parameter equal to 0,5. This is the case of a highly 
skewed marginal. In the second case, the marginal distribution of X is 
also normal, but the marginal distribution of Y is the Weibull distribu-
tion with the shape parameter equal to 2,5. Thus, this case represents 
the situation when both marginals are nearly symmetric. The results 
presented in Table 14 have been observed for the sample size n=100, 
and the averages have been calculated for the sets of differently de-
pendent samples.

From Table 14 one can see that the observed variability of Kend-
all’s τ is smaller than the variability of Pearson’s r not only, as it has 
been expected, in the case of highly skewed variables, but also, in 
contrast to our supposition, in the case of nearly symmetric variables. 
Therefore, one can say that the variability of Kendall’s τ is smaller 
than the variability of Pearson’s r. This finding has been confirmed 
in another experiment in which standard deviations of both measures 
of dependence have been calculated from the samples for which the 
numerical values of both measures were the same. In Table 15 we 
present the results of such an experiment where samples of n=20 ele-
ments were generated from the Gumbel copula with the normal and 
exponential marginal distributions.

The average value of στ  is in this case equal to 0,09905, and the 
average value of σr is equal to 0,13442. Thus, the results presented in 
Table 15 are in the perfect agreement with our previous findings.

The entire analysis presented so far shows that in the considered 
cases of the marginal distributions that may be used in the problems 
of reliability prediction non-parametric measures of dependence, such 
as Kendall’s τ, have better properties than Pearson’s coefficient of lin-
ear correlation r. This is not only because of the ranges of possible 
values of r which may be highly misleading for practitioners, but also 
because of observed smaller variability. However, the question about 
the choice of the non-parametric statistic that is used for measuring 
dependence remains open.

The relationship between the most popular measures of depend-
ence, Kendall’s τ and Spearman’s ρ, , both of which are considered 
in this paper, have been analyzed by many authors. Some important 
results, and references to other important papers, can be found in the 
paper by Fredricks and Nelsen [5]. The authors who considered this 
problem were interested more by the cases of weak and moderate de-
pendence than in the cases of strong dependence, as they are more 
important in the context of the problem of reliability prediction. For 
example, Fredricks and Nelsen [5] proved the assertion previously 
formulated, in different versions, by other statisticians that Kendall’s 
τ  will be about two-thirds of the value of Spearman’s ρ  when the 
sample size n is large.

The results of our simulation experiments in which we have cal-
culated not only the values of Kendall’s τ, but the values of Spear-
man’s ρ as well, let us analyze both measures in the whole spectrum 
of their possible values. In order to do so, we can use the same ap-
proximation methodology as that described in this section, and to find 
the approximate relationship ρ(τ). This relationship does not depend 
upon the types of the marginal distributions, but only on the type of 
the copula that describes the dependence. In Table 16 we present the 
coefficients in the expansion according to (29).
Similar coefficients for the expansion of ρ(τ) calculated from (35) for 
the Gumbel copula are presented in Table 17.
The impact of the type of copula on the relationship between Spear-
man’s ρ and Kendall’s τ is presented in Figure 7.

From Figure 7 one can see that the function ρ(τ) is nearly linear,  
for small and moderate absolute values of τ, and slightly non-linear 
in the case of strong dependence. The slope of the function ρ(τ) is 
for small and moderate values of τ fully determined by the first coef-
ficient a1 which is very close do 1,5. This gives a numerical con-
firmation of the theoretical results mentioned above. Moreover, the 
influence of the type of dependence is visible only in the case of the 
Clayton copula and the negative dependence of considered random 
variables. Therefore, in the case of the considered four copulas the 
function ρ(τ) is nearly the same.

Because the values of ρ are greater than the respective values of τ 
one can think, using the same way of inference as it has been already 
used in this paper, that the observed variability of ρ should be smaller 

Fig. 7. Approximate relationship ρ(τ)

Table 15. Comparison of observed values of standard deviations 
of r and τ (same values of r and τ)

r=τ στ σr

0,924983 0,034367 0,028979

0,91753 0,036602 0,029645

0,887326 0,045321 0,038427

0,836815 0,059091 0,061777

0,766665 0,076846 0,095548

0,677651 0,10082 0,134077

0,57147 0,118242 0,172431

0,44923 0,13792 0,206378

0,312261 0,15365 0,231068

0,162145 0,162801 0,241422

0,082468 0,163901 0,238912

Table 16. Coefficients of the polynomial approximation of ρ(τ) for samples of 
n=100

coefficient clayton Frank Gauss

a1 1,466021 1,496795 1,4891

a2 0,069209 -0,00018 -0,00051

a3 -0,60101 -0,48078 -0,48166

a4 0,001862 0,000489 0,001283

Table 17. Coefficients of the polynomial 
approximation of ρ(τ) for sam-
ples of n=100 (Gumbel copula)

coefficient Gumbel

a1 1,48496

a2 -0,09709

a3 -0,33526

a4 0,14299

a5 -0,34429
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than the variability of τ. 
The results of the anal-
ysis presented in Table 
18 do not confirm this 
claim.

In contrast to our 
supposition the aver-
age standard deviations 
of τ are visible smaller 
than the standard devia-
tions of ρ. Moreover, it 
seems that their nu-
merical value does not 
depend upon the type 
of the copula. There-
fore, one can conclude 
that the empirical val-
ues of Kendall’s τ are 
less variable than the 
respective values of 
Sperman’s ρ. This is 
also confirmed in the 
results of the analy-
sis presented in Table 
19 for the case of the 
Gumbel copula, and the 
sample size equal to 20. 
The average value of στ  
is in this case equal to 
0,103887, and the aver-
age value of σr is equal 

to 0,146776. Thus, the results presented in Table 18 confirm our claim 
that Kendall’s τ  is, from a practical point of view, a more accurate (i.e. 
less variable) measure of dependence than Spearman’s ρ.

5. Conclusions

Pearson’s coefficient of linear correlation r is the measure of de-
pendence most popular among practitioners despite the fact that its 
weaknesses have been known for more than one hundred years. In this 
paper we have investigated its applicability in the case of reliability 
prediction. In this particular practical problem the assumptions neces-
sary for a good behavior of Pearson’s r are obviously not fulfilled. 
However, it is not well known how the lack of the fulfillment of these 
assumptions influences the results of the analysis. Using some simple 
analytical methods and comprehensive computer simulations we have 
arrived at the following conclusions:

The observed values of Pearson’s a) r may be completely mislead-
ing in the evaluation of the strength of dependence when the 
dependent variables are highly skewed, as is frequently the case 
in the reliability context;
When considered distributions are not very skewed Pearson’s b) r 
can be used for the evaluation of the strength of dependence;
The same values of Pearson’s c) r may describe different levels of 
strength of dependence depending upon the type of dependence 
defined by the type of the copula that describes the dependent 
random variables;
Non-parametric measures of dependence such as Spearman’s d) ρ 
and Kendall’s τ  are better than Pearson’s r when applied to the 
analysis of dependence of life-times;
Kendall’s e) τ is better than a more popular Spearman’s ρ, as its 
variability seems to be lower.

Therefore, in searching for the most informative variables that can 
be used for the prediction of reliability one should use Kendall’s τ as 
the measure of dependence.
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