Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cam-clay models in mechanics of granular materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The mathematical models for granular materials utilizing concept of the critical state, is reviewed. Several extensions of the critical state Modified Cam-Clay (MCC) models are reviewed, including kinematic hardening with bounding surface (BS), the general plasticity (GP) model, extension of the MCC model to include finite strain, and different variants of the pressure hardening rule, including bi-modulus extension, hypoplastic, and the hyperelastic potential extension. The associated flow rules coupled with different hardening equations are considered. In the review the main attention is paid to the case of the infinitesimal strains.
Opis fizyczny
Bibliogr. 40 poz., 1 il. kolor.
  • Moscow State University of Civil Engineering, 26 Yaroslavscoe sh., Moscow, 117526, Russia
  • Institute for Problems in Mechanics, 101 Prosp. Verndskogo, Moscow, 129526, Russia
  • [1] Aboim, C., Roth, W.: Bounding surface plasticity theory applied to cyclic loading of sand, in: Int. Symp.Num. Models Geomech., 65-72, 1982.
  • [2] Al Tabbaa, A., Wood, D. M.: An experimentally based bubble model for clay. in: Proc. 3rd Int. Symp. Num. Models Geomech. (NUMOG III), 90-99, 1989.
  • [3] Alawaji, H., Runesson, K., Sture, S., Axelsson, K.: Implicit integration in soil plasticity under mixed control for drained and undrained response, Int. J. Numer. Anal. Methods Geomech., 13, 737-756, 1992.
  • [4] Andersen, K. H.: Bearing capacity under cyclic loading - offshore, along the coast, and on land, Can. Geotech J., 46, 513-535, 2009.
  • [5] Armero, F., Perez-Foguet, A.: On the formulation of closest-point projection algorithms in elastoplasticity - Part I: The variational structure, Int. J. Numer. Methods Eng., 53, 297-329, 2002.
  • [6] Auricchio, F., Taylor R.: A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes, Int. J. Plasticity, 15, 1359-1378, 1999.
  • [7] Auricchio, F., Taylor, R.L., Lubliner J.: Application of a return map algorithm to plasticity models, in: Owen D.R.J. et al. (Eds.), Computational Plasticity, CIMNE, Barcelona, 2229-2248, 1992.
  • [8] Bigoni, D., Hueckel T.: Uniqueness and localization associative and non-associative elastoplasticity, Int. J. Solids Struct., 28, 197-213, 1991.
  • [9] Borja, R.I., Lee S.R.: Cam-Clay plasticity. Part I: Implicit integration of elastoplastic constitutive relations, Comput. Methods Appl. Mech. Eng., 78, 49-72, 1990.
  • [10] Borja, R., Sama, K., Sanz, P.: On the numerical integration of three-invariant elastoplastic constitutive models, Comput. Methods Appl. Mech. Eng., 192, 1227-1258, 2003.
  • [11] Borja, R., Tamagnini, C.: Cam-Clay plasticity, Part III: Extension of the infinitesimal model to include finite strains, Comput. Methods Appl. Mech. Eng., 155, 73-95, 1998.
  • [12] Buscarnera, G., Dattola, G., di Prisco, C.: Controllability, uniqueness and existence of the incremental response: A mathematical criterion for elastoplastic constitutive laws, Int. J. Solids Struct., 48, 1867-1878, 2011.
  • [13] Callari, C., Auricchio, F., Sacco, E.: A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity, Int. J. Plasticity, 14, 1155-1187, 1998.
  • [14] Carter, J.P., Booker, J.R., Wroth, C.P.: A critical state soil model for cyclic loading, in: Soil mechanics|Transient and cyclic loading, G. N. Pande, O. C. Zienkiewicz, eds., Wiley, Chichester, 219-252, 1982.
  • [15] Conti, R., Tamagnini, C., De Simone, A.: Critical softening in Cam-Clay plasticity: Adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities, Comput. Methods Appl. Mech. Eng., 258, 118-133, 2013.
  • [16] Dafalias, Y. F., Herrmann, L. R.: A bounding surface soil plasticity model, in: Proc. Int. Symp. Soils Cyclic Trans. Load., 335-345, 1980.
  • [17] Dal Maso, G., De Simone, A.: Quasistatic evolution for cam-clay plasticity: Examples of spatially homogeneous solutions, Math. Models Methods Appl. Sci., 19, 1643-1711, 2009.
  • [18] Dal Maso, G., De Simone, A., Solombrino, F.: Quasistatic evolution for camclay plasticity: A weak formulation via viscoplastic regularization and time rescaling, Calc.Var., 40, 125-181, 2011.
  • [19] Dal Maso, G., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case, Netw. Heter. Media., 5, 97-132, 2010.
  • [20] Hashiguchi, K.: On the linear relations of V-ln p and ln v-ln p for isotropic consolidation of soils, Int. J. Num. Anal. Methods Geomech., 19, 367-376, 1995.
  • [21] Hirai, H.: An elastoplastic constitutive model for cyclic behavior of sands, Int. J. Num. Anal. Methods Geomech., 11, 5, 503-520, 1987.
  • [22] Liu, J., Xiao, J.: Experimental study on the stability of railroad silt subgrade with increasing train speed, J. Geotech. Geoenviron. Eng., (ASCE) GT.1943-5606.0000282, 10.1061, 833-841, 2010.
  • [23] Mroz, Z.: On the description of anisotropic work hardening, J. Mech. Phys. Solids., 15, 3, 163-175, 1967.
  • [24] Ni, J., Indraratna, B., Geng, X., Carter, J., Chen Y.: Model of soft soils under cyclic loading. Int. J. Geomech. Eng. (ASCE) GM.1943-5622.0000411, 2014, 10.1061, 1-10, 2014.
  • [25] Papuga, J.: A survey on evaluating the fatigue limit under multiaxial loading, Int. J. Fatigue. 33, 153-165, 2011.
  • [26] Puppala, A. J., Mohammad, L. N. Allen, A.: Permanent deformation characterization of subgrade soils from RLT test, J. Materials Civil Engng., 11, 274-282, 1999.
  • [27] Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behavior of wet clay, Engineering Plasticity, eds. J. Heyman and F. A. Leckie. Cambridge Univ. Press, 535-609, 1968.
  • [28] Roscoe, K. H., Schofield, A. N., Wroth C. P.: On the yielding of soils, Geotechnique, 8, 22-53, 1958.
  • [29] Roscoe, K. H., Schofield, A. N.: Mechanical behavior of an idealized nwet clay, In: Proc. 2nd European Conf. Soil Mechanics and Foundation Engineering, vol. I, 47-54, 1963.
  • [30] Sangrey, D. A.: Cyclic loading of sands, silts and clays. Earthquake engineering and soil dynamics, Proc. ASCE Geot. Engineering Div. Conf., 836-851, 1978.
  • [31] Schofield, A. N., Wroth, C.P.: Critical State Soil Mechanics, McGraw-Hill, 1968.
  • [32] Selig, E. T.: Soil failure modes in undrained cyclic loading, J. Geot. Engineering Div., 107, 539-551, 1981.
  • [33] Shahin, M. A. Loh, R. B. H., Nikraz, H. R.: Some observations on the behavior of soft clay under undrained cyclic loading, J. Geo Engineering, TGS, 6, 109-112, 2011.
  • [34] Simo, J. C., Meschke, G.: A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials, Comput. Mech., 11, 253-278, 1993.
  • [35] Takahashi, M., Hight, D. W., Vaughan, P. R.: Effective stress changes observed during undrained cyclic triaxial tests on clay, in: Proc. Int. Symp. on Soils under Cyclic and Transient Loading, Balkema, Rotterdam, 201-209, 1980.
  • [36] Uzan, J.: Characterization of granular materials, Transportation Research Record 1022, TRB. Washington DC: National Research Council, 52-59, 1985.
  • [37] Van Eekelen, S.J., Van den Berg, P.: The Delft egg model, a constitutive model for clay, DIANA Computational Mechanics '94, Springer, N.Y., 103-116, 1994.
  • [38] Wood, D.M.: Soil behavior and critical state soil mechanics, Cambridge University Press, 1990.
  • [39] Zhou, J., Gong, X.: Strain degradation of saturated clay under cyclic loading, Can. Geotech. J., 38, 208-212, 2001.
  • [40] Zienkiewicz, O., Mroz, Z.: Generalized plasticity formulation and applications to geomechanics, Mech. Eng. Materials, Wiley, Chichester, 655-679, 1984.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.