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Abstract  
 

A problem of finding the optimal repair/replacement policy of a technical object is under investigation. 
Depending on the distribution of the time-to-repair and certain cost parameters, a decision is taken 
whether to repair a failed object or replace it immediately after it fails. If a repair is chosen and it is not 
completed within a certain period, it is interrupted and the object is replaced by a new one. The optimi-
zation task consists in formulating the conditions for choosing between immediate replacement and re-
pair, and deriving the analytical equation for the maximum duration of a repair. The objective function 
is the expected cost of restoring the object to the operating condition. It is assumed that the cumulative 
distribution function (CDF) of the time-to-repair is a rational function (a quotient of polynomials). The 
properties of such CDFs are analyzed and the solutions of several optimization tasks with different CDFs 
that are rational functions are presented. The issue of fitting the time-to-repair distribution to empirical 
data is also addressed. 
 
1. Introduction  
 

The probability distributions of time-to-failure 
(TTF) and time-to-repair (TTR) have key signifi-
cance in constructing maintenance models used in 
reliability theory. In large part, they are used to 
describe the behavior of two-state systems which 
can be either functioning or failed, but can also be 
applied in modeling multi-state systems with dis-
crete or continuous state-space, as distributions of 
sojourn times in individual states for semi-Mar-
kov processes (Grabski, 2015) or distributions of 
crossing times for continuous deterioration pro-
cesses (Nakagawa, 2011). It is practically impos-
sible to summarize the literature on maintenance 
policies in a paper of limited length, because the 
list of publications would possibly contain hun-
dreds if not thousands of items. For this reason, 
the usual literature review is limited to several 

works providing a general overview of the consid-
ered topic. Comprehensive surveys of various 
maintenance models can be found in (Nakagawa, 
2005, 2008) or in the recent paper (Zhao et al., 
2022). A newly published book (Jardine & Tsang, 
2021) is partly industry-oriented and gives a broad 
insight into the issues of physical asset manage-
ment (PAM) and covers subject areas of replace-
ment, spare parts provisioning, inspection sched-
uling, resource management, and application of 
some emerging technologies (AI, IoT, Industry 
4.0, digital twin, Predictive Maintenance 4.0, 
Blockchain) in PAM. It puts a lot of focus on op-
timization techniques. As regards optimization of 
maintenance procedures, a detailed survey of rel-
evant literature can be found in (De Jonge & 
Scarf, 2019). More specialized issues are elabo-
rated in the following works: maintenance of sys-
tems with delayed failures (Cha & Filkenstein, 



 
Malinowski Jacek  

148 
 

2019), minimal, imperfect and perfect repairs (Re-
baiaia & Ait-kadi, 2021; Tadj et al., 2011), shock 
and damage models (Zhao & Nakagawa, 2018), 
or repair vs replacement – a problem similar to 
that considered in the current paper (Safaei et al., 
2019). All the latter papers contain substantial 
bibliographies on the respective topics. 
Unlike most studies on maintenance policies, the 
present paper focuses on the repair part of a failure 
and repair process. It addresses a less frequently 
analyzed problem of deciding whether to repair or 
replace a failed object, and, in case of a prolonged 
repair, when to interrupt it and replace the object 
with a new one. In addition, the author departs 
from the usual assumption that TTR has Weibull 
or lognormal distribution. Instead, distributions 
whose cumulative distribution functions (CDFs) 
are rational functions are considered. This means 
that the CDF of such a distribution is given by 
p(x)/q(x), where p and q are polynomials satisfy-
ing the following conditions: 
a) p(0)/q(0) = 0, 
b) p(x)/q(x) increases in x for x > 0, 
c) lim x→∞ p(x)/q(x) = 1. 
For brevity, the above defined distributions will 
be called P/Q distributions. 
As shown in Sections 3 and 4, if TTR has a P/Q 
distribution, then the corresponding repair rate 
function first increases from zero to some maxi-
mum value and then slowly decreases to zero. 
Such shape of this function is proper to systems 
whose remaining repair time is likely to increase 
along with the duration of a repair, if the repair 
has not been completed within a certain 
timeframe. Moreover, the CDF of a P/Q distribu-
tion is a rational function, which can be conven-
ient for numerical computations. These are two 
main reasons for considering P/Q distributed re-
pair times. Thus, P/Q distributions make a useful 
alternative to log-normal or Weibull ones, com-
monly used as repair time distributions. For exam-
ples of application of the latter two see Jokiel-
Rokita (Jokiel-Rokita & Magiera, 2011). To the 
best of the author’s knowledge, P/Q distributions 
have not been used for maintenance modeling in 
previous literature.  
 
2. Repair/replacement policy and optimal 

time of repair interruption  
 

Let us assume that a failed technical system un-
dergoes necessary repair according to the follow- 

ing rule: a repair takes a random amount of time 
that cannot exceed certain limit value L; if a repair 
is not completed within a period of length L, then 
it is interrupted and the system is replaced with a 
new one. The repair time, unlimited by L, will be 
denoted by T. Let F(x), f(x) and r(x) denote the 
CDF, probability density function (PDF), and re-
pair rate function of T, i.e.  
  ( ) = Pr( ≤  ) = ∫  ( )     (1) 
  ( ) =  ( ) [1 −  ( )]⁄ . (2) 
 
We also assume that the repair cost is proportional 
to the duration of a repair, where c is the cost rate 
per unit time, and the replacement cost is R. Such 
a repair policy is applicable when the repair time 
cannot be determined or estimated in advance and 
a repair has to be performed in order to know 
whether its duration exceeds L or not. Clearly, an 
optimization problem arises of finding L that min-
imizes the expected post-failure maintenance 
cost. The above assumptions yield that this cost, 
denoted here by K, is a random variable given by 
the following formula: 
  =   ∙  ,            ≤   ∙  +  ,    >  . (3) 

 
We can represent K as the sum of two random var-
iables K1 and K2: 
   =  ∙ min( ,  ) ,       =  ∙  {   } (4) 
 
where χ is a characteristic function on the sample 
space. We thus have: 
  ( ) =  (  ) +  (  ) =  
 =  ∙  [min( ,  )] +  ∙ Pr( >  ). (5) 
 
In order to compute E[min(T,L)], we will use the 
following lemma, helpful in computing moments 
of probability distributions. 
 
Lemma 1 
The k-th moment of a nonnegative random varia-
ble X can be computed from the following for-
mula: 
  [min(  ,   )] = ∫      Pr( >  )    . (6) 
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Proof: 
Integration by parts yields: 
 ∫      Pr( >  )    =   Pr( >  ) +  
 
  +∫     ( )  , (7) 
 
where F(x) is the distribution function of X. In 
view of the following equality 
 min(  ,   ) =    ,  ≤    ,  >   (8) 

 
the right-hand side of (7) is the expected value of 
min(X k,Lk), which ends the proof. 
From (6) it follows immediately that 
  (  ) = ∫      Pr( >  )  .   (9) 
 
Using (5) and Lemma 1 we obtain: 
  ( ) =  ∙ ∫ Pr( >  )     +  
 

   +  ∙ Pr( >  ). (10) 
 
The right-hand side of (10) can be regarded as a 
function of L. It will be denoted by ϕ(L) and re-
ferred to as the cost function. Differentiation of 
ϕ(L) yields: 
   ( )  =  ∙ Pr( >  ) −  ∙  ( ). (11) 
 
By equating the right-hand side of (11) to zero, we 
obtain the values of L for which the considered 
maintenance policy can be optimal in the sense of 
minimum expected cost. However, we have to 
keep in mind that a function may not have a min-
imum at a point where its derivative is equal to 
zero, or it may have a local minimum there. Thus, 
apart from finding the zeroes of dϕ(L)/dL, it is 
necessary to examine the behavior of ϕ(L) on the 
whole [0,∞) interval. It may happen that, apart 
from having a local minimum inside that interval, 
ϕ(L) reaches its global minimum at L = 0 or L = ∞. 
In the first case the optimal policy is to replace the 
system on failure without performing a repair, 
while in the second – to continue a repair indefi-
nitely and never to replace. The next lemma 
shows that under certain conditions on the repair 

rate function, the optimal repair policy is either to 
replace a system immediately after a failure or to 
continue a repair until completion.  
 
Lemma 2 
1. Let r(x) < c/R for x ≥ 0. Then ϕ(L) increases in 

L, and the optimal policy is to replace the sys-
tem on failure (do not repair). 

2. Let r(x) > c/R for x ≥ 0. Then ϕ(L) decreases in 
L, and the optimal policy is to continue a repair 
until completion (do not replace).  

3. Let r(x) be unimodal (there exists xmax such that 
r(x) increases for x < xmax and decreases for 
x > xmax), and such that r(0) < c/R, r(x0) = c/R 
for some x0 > 0, and r(x) > c/R for x > x0. Then, 
if c⋅E(T) < R, the optimal policy is to continue 
a repair until completion (do not replace), and 
if c⋅E(T) ≥ R, the optimal policy is to replace 
on failure. 

 
Proof: 
1. If r(x) < c/R for x ≥ 0, then (11) implies that 

ϕ’(L) is positive for L > 0, i.e. ϕ(L) increases in 
L in the interval [0,∞), hence ϕ(L) has mini-
mum at L = 0. This means that no repair is to 
be carried out and the system must be replaced 
immediately after a failure. 

2. The proof is analogous to that of part 1. 
3. Under the given assumptions, ϕ’(L) is positive 

for L∈[0,x0), equal to zero for L = x0, and neg-
ative for L > x0, hence ϕ(L) increases for 
L∈[0,x0), has maximum at L = x0, and de-
creases for L > x0. Also, ϕ(L) converges to 
c⋅E(T) in view of (10). Since ϕ(0) = R, ϕ(L) has 
minimum at L = 0 if c⋅E(T) ≥ R (do not repair), 
or at infinity if c⋅E(T) < R (do not replace). 

 
3. P/Q distributions  
 

In this section we will introduce a family of distri-
butions whose properties make them appropriate 
for modeling TTR of many types of systems, both 
technical and non-technical. They will be called 
P/Q distributions, where P/Q denotes a rational 
function (a quotient of polynomials), i.e. a distri-
bution of this type has the following CDF: 
  ( ) =  ( ) ( )  ( )   (12) 
 
where w(x) and v(x) are polynomials with positive 
coefficients and zero constant terms, and 
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0 ≤ deg(v) < deg(w). Clearly, if deg(v) = 0 then 
v ≡ 0. Thus, the equivalent of the survival function 
(the survival function as such characterizes the 
distribution of TTF) is given by 
  ( ) = 1 −  ( ) =  ( )   ( )  ( )   (13) 
 
and the PDF by 
  ( ) =   ( ) ( )   ( ) ( )   ( ) [ ( )  ( )  ] +  
 

 − ( )  ( )  ( )  ( )[ ( )  ( )  ] = 
 
 =   ( )[ ( )  ]  ( )  ( )[ ( )  ( )  ] .  (14) 

 
Let us note that the numerator in the last expres-
sion must be nonnegative so that f(x) can be  
a PDF. Thus, it must hold that  
   ( )[ ( ) +  ] −  ( )  ( ) ≥ 0. (15) 
 
For this reason w(x) and v(x) cannot be chosen ar-
bitrarily, e.g. if w(x) = x3 + x, v(x) = 4x2 and β = 1/3 
then f(x) < 0 for x = 1/2. From (13) and (14) we 
readily obtain the repair rate function: 
  ( ) =  ( )   ( ) =  
 

  =   ( )  ( )     ( ) −  ( )  ( ) ( )   . (16) 
 
Remark: It is not necessary that powers of x in 
w(x) and v(x) be integer numbers. This ensures 
greater flexibility in fitting F(x) given by (12) to 
sample data. Some examples given in Section 4 
show the behavior of repair rate and cost functions 
for non-integer powers of x. 
 
3.1. Distributions whose CDFs are quotients 

of poly-logarithmic functions 
 

Distributions referred to in the title of this section 
are a modification of P/Q distributions, obtained 
by replacing x with ln(x + 1), i.e. the CDF od such 
a distribution is a quotient of poly-logarithmic 
functions defined below: 
  ( ) =  (  (   )) (  (   ))  (  (   ))  . (17) 

The respective PDF and repair rate function are 
given by the following formulas: 
  ( ) =   ( ) ( )   ( ) ( )   ( ) (   )[ ( )  ( )  ] +  
 

 − ( )  ( )  ( )  ( )(   )[ ( )  ( )  ] = 
 

 =   ( )[ ( )  ]  ( )  ( )(   )[ ( )  ( )  ]  (18) 
 
and 
  ( ) =  ( )   ( ) =  
 

  =  (   )[ ( )  ( )  ]    ( ) −  ( )  ( ) ( )    (19) 
 
where y = ln(x + 1). For example, if w(y) = yk and 
v(y) = 0, then  
  ( ) =  [ln( + 1)] ⁄  (20) 
 
and 
  ( ) =  [  (   )]   (   ) [  (   )]    . (21) 
 
4. Repair rate and cost functions for selected 

P/Q distributions  
 

Now we shall present the graphs of a number of 
repair rate and cost functions to illustrate how they 
behave depending on the CDF of the repair time 
and cost parameters. The first two figures illus-
trate the case w(x) = x2, v(x) = 0. Figure 1 presents 
the repair rate function r(x) with the horizontal 
lines indicating the values of c/R for c = 8, 10, 12 
and R = 100. The points at which these lines cross 
the increasing/decreasing r(x) are the local max-
ima/minima of the respective cost functions (see 
Lemma 2) whose graphs are shown in Figure 2. In 
all three cases the local minima are also the global 
ones (for c = 12 the value of ϕ at its local mini-
mum is only slightly less than R), hence in each 
case the optimal policy is to interrupt a repair at 
the time equal to the respective local minimum.  
Figures 3 and 4 present the graphs of the repair 
rate and cost functions for w(x) = x1.75 (non-inte-
ger power of x) and v(x) = 0. Let us note that the 
graph in Figure 3 is less steep than that in Figure 
1 and the horizontal line indicating c/R for c = 12 
(c/R = 0.12) lies above the graph of r(x). 
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Figure 1. Repair rate function for w(x) = x2, v(x) = 0, 
β = 36. 
 

 

Figure 2. Cost functions for w(x) = x2, v(x) = 0, 
β = 36, c = 8 (red), c = 10 (green), c = 12 (blue), 
R = 100. 
 

 

Figure 3. Repair rate function for w(x) = x1.75, 
v(x) = 0, β = 36. 

In Figure 4 we can see how the shape of the cost 
function ϕ(L) changes as the parameter c in-
creases. For c = 8 the local minimum of ϕ(L) near 
L = 18 is also its global minimum, which means 
that if a repair is not completed until then, the sys-
tem must be replaced. For c = 10 the function ϕ(L) 
has one local minimum near L = 12, but, since the 
value of ϕ(L) at that point exceeds its global min-
imum at L = 0, the optimal policy in this case is 
do not repair and replace on failure. For c = 12 it 
holds that r(x) < c/R = 0.12, where x ≥ 0, thus, ac-
cording to Lemma 2, the optimal policy is the same 
as in the previous case (immediate replacement).  
Figures 5 and 6 show the behavior of the repair 
rate and cost functions for w(x) = x2, v(x) = x (non-
zero v(x)) and β = 36. Let us note that the graph in 
Figure 5 lies under the graph in Figure 1. As a re-
sult, the cost functions in Figure 6 decrease more 
slowly and then increase faster than the cost func-
tions in Figure 2. 
 

 

Figure 4. Cost functions for w(x) = x1.75, v(x) = 0, 
β = 36, c = 8 (red), c = 10 (green), c = 12 (blue), 
R = 100. 
 

 

Figure 5. Repair rate function for w(x) = x2, v(x) = x, 
β = 36. 
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Figure 6. Cost functions for w(x) = x2, v(x) = x, 
β = 12, c = 6 (red), c = 8 (green), c = 12 (blue), 
R = 60. 
 
Finally we present the graphs of repair rate and 
cost functions if the time-to-repair CDF is a quo-
tient of poly-logarithmic functions. Let w(y) = y2 
and v(y) = 0. It can be seen that with the same scale 
and cost parameters, the graph of the repair rate 
function in Figure 7 is much more flat than the 
graph in Figure 1, which results in almost linearly 
increasing cost functions. As indicated by Fig-
ure 8, and confirmed by Lemma 2, the optimal 
policy is to replace the system on failure. 
Let now w(y) = y5, i.e. the power of ln(x + 1) is 
changed to 5. The scale and cost parameters being 
the same, the repair rate function in Figure 9 de-
creases faster than that in Figure 1, which results 
in a faster increase of the cost functions (Figure 10 
compared to Figure 2) after they reach their mini-
mum values.  

 

Figure 7. Repair rate function for w(x) = [ln(x + 1)]2, 
v(x) = 0, β = 36. 
 

Figure 8. Cost functions for w(x) = [ln(x + 1)]2, 
v(x) = 0, β = 36, c = 8 (red), c = 10 (green), c = 12 
(blue), R = 100. 
 

 

Figure 9. Repair rate function for w(x) = [ln(x + 1)]5, 
v(x) = 0, β = 36. 
 

 

Figure 10. Cost functions for w(x) = [ln(x + 1)]5, 
v(x) = 0, β = 36, c = 8 (red), c = 10 (green), c = 12 
(blue), R = 100. 
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5. Moments of P/Q distributions  
 

The following lemma specifies conditions under 
which a P/Q distributed random variable has finite 
moments, needed e.g. for the purpose of estimat-
ing its parameters, which issue is addressed in 
Section 7. 
 
Lemma 3  
The random variable X whose CDF is given by 
(12) has finite k-th moment if and only if 
deg(w) > 1 and deg(w) – deg(v) > k.  
 
Proof: Let deg(v) > 0. According to (1) and (9), 
we have: 
  (  ) =  ∫      ( )   ( )  ( )    >  
 
  >  ∫      ( ) ( )  ( )      =  
 

  =  ∫   ( ) ( )    +      +   ( )           > 
 

  >  ∫   ( ) ( )    +      +   ( )           .  (22) 
 
Let deg(w) – deg(v) = k, i.e. 
  ( ) = ∑         ,  
  ( ) = ∑           .  (23) 
 
The following sequence of inequalities holds for 
x ≥ 1: 
  ( ) ( )    =     ⋯                   ⋯         <  
 
  <     ⋯                      =  
 
  =        ⋯                     <  
 
  <    ⋯                  .  (24) 
 
It also holds that 
      +   ( )    =  
 

  =      +       ⋯         <  
 
  < 1 +     ⋯     .  (25) 
 
In view of (24) and (25), if x ≥ 1 then 
   ( ) ( )    +      +   ( )       >        (26) 
 
where 
  =         
  =    ⋯         + 1 +     ⋯     .  (27) 
 
From (22) and (26) we obtain 
  (  ) >  ∫          =  
 
  =   ln(  +  )   = ∞  (28) 
 
which means that the k-th moment is infinite. 
Let now deg(w) – deg(v) = k + 1, i.e. 
  ( ) = ∑         ,  
  ( ) = ∑     .          (29) 
 
We then have: 
  (  ) =  ∫      ( )   ( )  ( )      =  
 
  =  ∫      ( )   ( )  ( )      +  
 
    + ∫      ( )   ( )  ( )      < 
 
  <  ∫    ⋯              + 
 
    + ∫      ( )   ( )     ≤ 
 
  ≤     ⋯          +  
 
    + ∫      ⋯                     .  (30) 
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If x ≥ 1 then  
     +⋯+           ≤  
 
  ≤ (  +⋯+       )    .  (31) 
 
Let us note that n – 2 ≥ k, because 
n = deg(w) = deg(v) + k + 1 and deg(v) ≥ 1. From 
(30) and (31) we obtain: 
  (  ) <     + 1 +  
 
  +  ∫       +             (32) 
 
where c = β1 + … + βn – k – 1. The integral in (32) 
is finite, as follows from the integration rules for 
power functions. Thus, the k-th moment of X is 
also finite. 
 
Remark 1: The proof in the case deg(v) = 0 is sim-
ilar, but simpler.  
Remark 2: Lemma 2 holds true for non-integer 
powers of x in w(x) and v(x). E.g. E(X) < ∞ for 
w(x) = x2.5 and v(x) = x1.4. The proof is analogous 
to that for integer values. 
 
6. Pareto distribution as P/Q one 
 

According to Arnold (Arnold, 2015), a nonnega-
tive random variable X with the following survival 
function: 
 Pr ( >  ) =         (33) 
 
has a Pareto distribution with the scale parameter 
β and the shape parameter α, where both parame-
ters are positive. This type of distribution is fre-
quently used in financial mathematics and for 
modeling natural and social phenomena. Let us 
note that if α = 1 then a Pareto distributed random 
variable has CDF of the P/Q type. Indeed, in view 
of (13), if α = 1 then w(x) = x and v(x) = 0.  
 
7. Fitting P/Q distribution to sample data 
 

Selected P/Q distributions can be fitted to sample 
data by means of a method developed by the au-
thor and called method of curtailed moments. The 
standard method of moments consists in estimat-
ing the unknown parameters θ 1,…,θ k of a random 

variable X by solving the set of equations 
 ℎ     , … ,    =   ∑        ,   = 1, … ,    (34) 
 
where θ j with caret is the estimator of the un-
known parameter θ j, the functions h j, j = 1,…,n 
are such that E(X j)=h j(θ 1,…,θ k), and x1,…,xn is a 
random sample from X. The right hand-side of 
(34) is the k-th raw sample moment that approxi-
mates E(X j). Note that the first k moments of X 
have to be finite so that the standard method of 
moments can be applied (see Lemma 3 in Sec-
tion 5). 
The method of curtailed moments uses the ap-
proximation of E[min(X j,L 

j)] instead of E(X j), 
where L is an arbitrarily chosen large number. It 
can be applied when X has infinite moments, 
which rules out the use of the regular method. The 
set of equations (34) is replaced with the follow-
ing one: 
 ℎ     , … ,   ,   =   ∑ min (   ,      ) ,  (35) 
 
for  = 1, … , .  
 
As an example, let us consider the P/Q distribu-
tion with the following CDF 
  ( ) =        (36) 
 
where k ≥ 1 and β > 0. In view of (6) we have: 
  [min(  ,  )] = ∫               =  
 
  =  [ln(  +  ) − ln( )] =  ln        .  (37) 
 
The distribution given by (36) has one parameter 
β which can be estimated by β with caret found 
from the following equation: 
 ℎ   ,   =   ∑ min (   ,      ), (38) 
 
where 
 ℎ( ,  ) =  ln        . (39) 
 
The equation (38) cannot be solved analytically 
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with respect to β caret, thus a numerical method 
(e.g. the Newton-Raphson one) has to be used to 
estimate β.  
 
8. Modification of P/Q repair rate function  
 

As implied by (16) and (19), the repair rate func-
tion of a P/Q distribution or one with poly-loga-
rithmic CDF converges to 0 in infinity. This can 
be seen in the graphs in Section 4. In consequence, 
the longer the duration of a repair, the smaller the 
chance that it will be completed. For example, 
such a situation is possible if the repair time is ex-
tended due to increasingly occurring unpredicted 
complications, but is rather unlikely to occur if a 
repair is carried out following a standard proce-
dure. Thus, in many cases, the appropriately 
shaped repair rate function should converge in in-
finity to a non-zero positive value. Quite fortu-
nately, the repair rate function of a P/Q distribu-
tion can be easily modified so as to satisfy this 
condition and remain analytically tractable. These 
criteria are met by the following repair rate func-
tion: 
   ( ) =  ( ) +       , (40) 
 
where r(x) is given by (16) while γ and δ are ap-
propriately selected positive constants. It is easy 
to check that r1(0) = 0 and r1(x) converges to γ as 
x → ∞. 
Let us now derive a formula for S1(x) = 1 – F1(x), 
where F1(x) is the CDF corresponding to r1(x).  
Since 
   ( ) =    ( )    ( ) = −         ( )    , (41) 
 
we have: 
   ( ) = exp −∫   ( )     =  
 
  = exp −∫  ( )     exp  −∫           = 
 
  =  ( ) exp  − ∫  1 −           = 
 
  =  ( ) exp(−  ) exp    ∫          = 
 
  =  ( ) exp(−  ) exp    ln       , (42) 

where S(x) is given by (13). As shown in Sec-
tion 2, the formula for S1(x) is needed to compute 
the expected post-failure maintenance cost and 
find the optimal value of L. 
 
9. Conclusion  
 

In the presented chapter, the problem of optimiz-
ing a repair/replacement policy for a two-state re-
pairable system has been addressed. Depending 
on the properties of the repair rate function and the 
values of the cost parameters, the following op-
tions are possible: 
• replace the system immediately after a failure, 
• interrupt a repair when its duration exceeds a 

certain time limit, 
• continue a repair until its completion. 
The choice of the optimal option is based on 
Lemma 2 or, if this lemma is inapplicable, on the 
analysis of the cost function. The chapter focuses 
on systems with P/Q distributed repair times, i.e. 
the CDF of such a system’s TTR is a rational func-
tion, where the polynomials in the numerator and 
denominator satisfy the condition (15). Thus de-
fined CDF can be modified so that the correspond-
ing repair rate function has a non-zero limit at in-
finity (see Section 8). The justification for consid-
ering P/Q distributed repair times is given in the 
last paragraph of the Introduction. If there are in-
dications that the repair time follows a P/Q distri-
bution, one may need to estimate its parameters. 
One such estimation method, developed by the au-
thor, is demonstrated in Section 7. In general, es-
timation of P/Q distributions and their modifica-
tions seems to be an interesting and practice-ori-
ented area of research and will be a topic of future 
work.  
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