Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of statistical analysis applied in order to evaluate the effect of the high melting point elements to pressure die cast silumin on its tensile strength Rm, unit elongation A and HB were discussed. The base alloy was silumin with the chemical composition similar to EN-AC 46000. To this silumin, high melting point elements such as Cr, Mo, V and W were added. All possible combinations of the additives were used. The content of individual high melting point additives ranged from 0.05 to 0.50%. The tests were carried out on silumin with and without above mentioned elements. The values of Rm, A and HB were determined for all the examined chemical compositions of the silumin. The conducted statistical analysis showed that each of the examined high melting point additives added to the silumin in an appropriate amount could raise the values of Rm, A and HB. To obtain the high tensile strength of Rm = 291 MPa in the tested silumin, the best content of each of the additives should be in the range of 0.05-0.10%. To obtain the highest possible elongation A of about 6.0%, the best content of the additives should be as follows: chromium in the range of 0.05-0.15%, molybdenum 0.05% or 0.15%, vanadium 0.05% and tungsten 0.15%. To obtain the silumin with hardness of 117 HB, chromium, molybdenum and vanadium content should be equal to about 0.05%, and tungsten to about 0.5%.
Czasopismo
Rocznik
Tom
Strony
77--82
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
- Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
autor
- University of Occupational Safety Management in Katowice, Faculty of Technical Sciences, Poland, Bankowa 8 Street, 40-007 Katowice, Poland
autor
- Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
Bibliografia
- [1] 49th Census of World Casting Production. Modern Casting, December 2015, 26-31.
- [2] 50th Census of World Casting Production. Modern Casting, December 2016, 25-29.
- [3] Census of World Casting Production. Modern Casting, December 2017, 24-28.
- [4] Majidi, O., Shabestari, S.G. & Aboutalebi, M.R. (2007). Study of fluxing temperature in molten aluminum refining process. Journal of Materials Processing Technology. 182, 450-455.
- [5] Pezda, J. (2014). Modification of the EN AC-42000 aluminium alloy with use of multicomponent electrolysis of sodium salt. Metalurgija. 53(1), 55-58.
- [6] Władysiak, R. (2013). Computer Control the Cooling Process in Permanent Mold Casting of Al-Si Alloy. Archives of Metallurgy and Materials. 58(3), 977-980.
- [7] Zheng, Y., Xiao, W., Ge, S., Zhao, W., Hanada, S. & Ma, C. (2015). Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al-Si-Cu-Mg alloys. Journal of Alloys and Compounds. 649, 291-296.
- [8] Ding, L., Jia, Z., Zhang, Z., Sanders, R.E., Liu, Q. & Yang, G. (2015). The natural aging an deprecipitation hardening behavior of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Materials Science & Engineering A. 627, 119-126.
- [9] Yu, W., Zhao, H., Wang, L., Guo, Z. & Xiong, S. (2018). The influence of T6 treatment on fracture behavior of hypereutectic Al-Si HPDC casting alloy. Journal of Alloys and Compounds. 731, 444-451.
- [10] Pezda, J. The Effect of the T6 Heat Treatment on Hardness and Microstructure of the EN AC-AlSi12CuNiMg Alloy. Metalurgija. 53(1), 63-66.
- [11] Smith, J.F., Bailey, D.M. & Carlson, O.N. (1982). The Cr-V (Chromium-Vanadium) System. Bulletin of Alloy Phase Diagrams. 2(4), 469-473.
- [12] Venkataraman, M. & Neumann, J.P. (1987). The Cr-Mo (Chromium-Molybdenum) System. Bulletin of Alloy Phase Diagrams. 8(3), 216-220.
- [13] Zheng, F., Argent, B.B. & Smith, J.F. (1999). Thermodynamic Computation of the Mo-V Binary Phase Diagram. Journal of Phase Equilibria. 20(4), 370-372.
- [14] Okamoto, H. (2008). Al-Cr (Aluminum-Chromium). Journal of Phase Equilibria and Diffusion. 29(1), 111-112. DOI: 10.1007/s11669-007-9225-4.
- [15] Alloy Phase Diagrams. ASM Handbook Vol. 3. 1992.
- [16] Okamoto, H. (2010). Al-Mo (Aluminum-Molybdenum). Journal of Phase Equilibria and Diffusion. 31(5), 492-493.
- [17] Szymczak, T., Gumienny, G., Stasiak, I. & Pacyniak, T. (2017). Hypoeutectic Al-Si Alloy with Cr, V and Mo to Pressure Die Casting. Archives of Foundry Engineering. 17(1), 153-156.
- [18] Szymczak, T., Gumienny, G. & Pacyniak, T. (2015). Effect of tungsten on the solidification process, microstructure and properties of silumin 226. Transactions of the Foundry Research Institute. 55(3), 3-14.
- [19] Szymczak, T., Gumienny, G. & Pacyniak, T. (2016). Effect of molybdenum on the crystallization, microstructure and properties of silumin 226. Transactions of the Foundry Research Institute. 56(3), 193-204.
- [20] Szymczak, T., Gumienny, G. & Pacyniak, T. (2016). Hypoeutectic silumin to pressure die casting with vanadium and tungsten. Archives of Metallurgy and Materials. 61(4), 2103-2110.
- [21] PN-EN 1706:2011. Aluminum and aluminum alloys. Castings. The chemical composition and mechanical properties. (in Polish).
- [22] Kleinbaum, D.G., Kupper, L.L. & Nizan, A. (1998). Applied Regression Analysys and Other Multivariable Methods. (3rd. ed.). Duxbury Press, Pacific Grove.
- [23] Altman, D.G. (1991). Practical statistics for medical research. London: Chapman and Hall.
- [24] Armitage, P., Berry, G. & Matthews, J.N.S. (2002). Statistical methods in medical research. (4th ed.). Blackwell Science.
- [25] Szymczak, T., Szymszal, J. & Gumienny, G. (2018). Evaluation of the effect of the Cr, Mo, V and W content in an Al-Si alloy used for pressure casting on its proof stress. Archives of Foundry Engineering. 18(2), 105-111.
- [26] Szymczak, T., Szymszal, J. & Gumienny, G. (2018). Statistical methods used in the assessment of the influence of the Al-Si alloy's chemical composition on its properties. Archives of Foundry Engineering. 18(1), 203-211.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a94015aa-149c-4cdb-a24f-f8878f52d221