PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical procedures and their practical application in PV module analyses. Part 3, Parameters of atmospheric transparency : determining and correlations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented article examines aspects of a PV module testing using natural sunlight in outdoor conditions. The article discusses the physical sense of indexes: atmosphere purity, diffused component content, beam clear sky index. Procedures for their determination are given in relation to both instantaneous and daily values. Their close connection with the values of solar irradiance spectral distribution such as Average Photon Energy and Useful Fraction is demonstrated, as well as their usefulness in module testing in outdoor conditions. Their influence on the conversion of modules made from various absorbers and various technologies is demonstrated.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, 6a Kard. B. Kominka St., 45-032 Opole, Poland
autor
  • Institute of Environmental Engineering and Biotechnology, University of Opole, 6a Kard. B. Kominka St., 45-032 Opole, Poland
Bibliografia
  • [1] Rodziewicz, T., Teneta, J., Zaremba, A. & Wacławek, M. Analysis of Solar Energy Resources in Southern Poland for Photovoltaic Applications. Ecol. Chem. Eng. S 20, 177–198 (2013). https://doi.org/10.2478/eces-2013-0014
  • [2] Chojnacki J., Teneta J., Wieckowski L. Development of PV systems and research studies on photovoltaics at the AGH University of Science and Technology in Krakow, 22nd European Photovoltaic Solar Energy Conference, Conference Proceedings, 3049–3052 (2007). https://www.eupvsec-proceedings.com/
  • [3] Zdanowicz, T., Prorok, M., Kolodenny, W., Roguszczak, H. Outdoor data acquisition system with advanced database for PV modules characterization,3rd WCPEC (2003), http://www.pvscproceedings.org/.
  • [4] Zdanowicz, T., Roguszczak, H. Automated outdoor data acquisition system for prolonged testing of PV modules, Proc 13th EC PV Solar Energy Conference 2322 (1995). https://www.eupvsecproceedings.com/.
  • [5] Rodziewicz, T. & Rajfur, M. Numerical procedures and their practical application in PV modules analyses. Part I: air mass. OptoElectron. Rev. 27, 39–57 (2019). https://doi.org/10.1016/j.opelre.2019.02.002
  • [6] Rodziewicz, T. & Rajfur, M. Numerical procedures and their practical application in PV modules’ analyses. Part II: Useful fractions and APE. Opto-Electron. Rev. 27, 149–160 (2019). https://doi.org/10.1016/j.opelre.2019.05.004.
  • [7] Hu, C., & Richard M. White. Solar Cells: From Basics to Advanced Systems. (New York: McGraw-Hill, 1983). https://www.worldcat.org/title/solar-cells-from-basics-to-advancedsystems/oclc/924887007.
  • [8] Spencer, J.W. Fourier Series Representation of the Position of the Sun. Search 2, 162-172 (1971)
  • [9] Myers, J. D. Solar applications in industry and commerce. (Prentice Hall PTR, 1984)
  • [10] Tendeku, F. Retrieval of Atmospheric Turbidity Coefficient and Water Column Density from Solar Irradiance Data, Proc. Arkansas Acad. Sci. 49, 177-180 (1995). https://scholarworks.uark.edu/jaas/vol49/iss1/38/
  • [11] Tendeku, F. A method for determining atmospheric aerosol optical depth using solar transmission measurements. Proc. Arkansas Acad. Sci. 48, 192-195 (1994). http://scholarworks.uark.edu/jaas/vol48/iss1/39
  • [12] Penndorf, R. Tables of the refractive index for standard air and the Raleigh scattering coefficient for the spectral region between 0.2 and 20.0 and their application to atmospheric optics. J. Opt. Soc. Am. 47, 176-182 (1957). https://doi.org/10.1364/JOSA.47.000176
  • [13] Kneizys, F.X., Shettle, E.P et al. Atmospheric Transmittance/Radiance: Computer code LOW TRAN5. Tech. Rep. AFGL-TR-80-0067. US Air Force Geophysics Laboratory (Bedford, Massachusetts, 1980).
  • [14] Kasten, F., Young A.T. Revised optical air mass tables and approximation formula. Applied Optics. 28, 4735-4738 (1989) https://doi.org/10.1364/AO.28.004735
  • [15] F. Kasten, The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness, Solar Energy 56, 239– 244 (1996). https://doi.org/10.1016/0038-092X(95)00114-7.
  • [16] B. Leckner, The Spectral distribution of solar radiation at the earth's surface - elements of a model. Solar Energy 20, 143-150 (1978). https://doi.org/10.1016/0038-092X(78)90187-1
  • [17] Bird, R.E. A simple spectral model for direct normal and diffuse horizontal irradiance. Solar Energy. 32, 461-471 (1984). https://doi.org/10.1016/0038-092X(84)90260-3
  • [18] Vigroux, E. Contribution a l'etude experimentale de l'absorption de l'ozone. Annales de Phys. 8, 709-762 (1953). https://doi.org/10.1051/anphys/195312080709
  • [19] Whitaker, C., Newmiller, J. Photovoltaic Module Energy Rating Procedure. Final Subcontract Report, New miller Endecon Engineering San Ramon (California, 1998), NREL contract No. DEAC36-83CH10093.
  • [20] Moskalenko, N. The spectral transmission function in the bands of water vapor, O3, N2O, and N2 atmospheric components. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 5, 678-685 (1969).
  • [21] Koepke, P., Quenzel, H. Water vapor: Spectral transmission at wavelengths between 0.7 m and 1 m. Appl. Opt. 17, 2114-2118 (1978). https://doi.org/10.1364/AO.17.002114.
  • [22] Gueymard, Ch. Parametrizied transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy 71, 325-346 (2001), https://doi.org/10.1016/S0038-092X(01)00054-8.
  • [23] Feussner, K., Dubois, P., Trübungsfactor, precipitable water. Staub. Gerlands Beitr. Geophys. 27, 132-175 (1930).
  • [24] Grenier, J.C., Casiniere, De La A. & Cabot, T. A spectral model of Linke’s turbidity factor and its experimental implications. Solar Energy 52, 303-313 (1994), https://doi.org/10.1016/0038-092X(94)90137-6.
  • [25] Gueymard, C., Vignola, F. Determination of atmospheric turbidity from the diffuse-beam broad-band irradiance ratio. Solar Energy. 63, 135–146 (1998), https://doi.org/10.1016/S0038-092X(98)00065-6.
  • [26] Heuklon, Van T.K. Estimating atmospheric ozone for solar radiation models, Solar Energy, 22, 63–68 (1979), https://doi.org/10.1016/0038-092X(79)90060-4.
  • [27] Viswanadham, Y. The relationship between Total Precipitable Water and Surface Dew Point, J. Appl. Meteo. 20, 3–8 (1981), https://www.jstor.org/stable/26179402.
  • [28] Hofierka, J., Súri, M. The solar radiation model for Open source GIS: implementation and applications. Proceedings of the Open source GIS - GRASS users conference (2002), http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hofierka_Jaroslav.pdf
  • [29] Šúri, M., Dunlop, E.D. & Jones, A.R. GIS-based inventory of the potential photovoltaic output in Central and Eastern Europe. PV in Europe. From PV Technology to Energy Solutions, Conference and Exhibition (2002) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.925 4&rep=rep1&type=pdf
  • [30] Ineichen, P., Perez, R. A new air mass independent formulation for the Linke turbidity coefficient. Solar Energy 73, 151-157 (2002), https://doi.org/10.1016/S0038-092X(02)00045-2.
  • [31] Wright, J., Perez, R. & Michalsky, J.J. Luminous efficacy of direct irradiance: variations with insolation and moisture conditions, Solar Energy 42, 387–394 (1989), https://doi.org/10.1016/0038-092X(89)90057-1.
  • [32] Gueymard, C.A. Turbidity Determination from Broadband Irradiance Measurements - A Detailed Multicoefficient Approach. J. Appl. Meteorol. 37, 414-435 (1998), https://doi.org/10.1175/1520-0450(1998)037%3C0414:TDFBIM%3E2.0.CO;2.
  • [33] Perez, R., Seals, R., Ineichen, P., Steward, R. & Menicucci, D. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39, 221-231 (1987), https://doi.org/10.1016/S0038-092X(87)80031-2
  • [34] Ineichen, P., Perez, R. Derivation of Cloud Index from Geostationary Satellites and Application to the Production of Solar Irradiance and Daylight IL luminance Data, Theor. Appl. Climatol. 64, 119-130 (1999), https://doi.org/10.1007/s007040050116
  • [35] Perez, R., Ineichen, P., Seals, R. & Zelenka, A. Making full use of the clearness index for parameterizing hourly insolation conditions. Solar Energy 45, 111-114 (1990). https://doi.org/10.1016/0038-092X(90)90036-C.
  • [36] Batlles, F.J., Olmo, F.J., Tovar, J. & Alados-Arboledas, L. Comparison of cloudless sky parameterisation of solar irradiance at various Spanish midlatitude Locations, Theor. Appl. Climatol. 66, 81–93 (2000), https://doi.org/10.1007/s007040070034
  • [37] McKenney, D.W., Mackey, B.G. & Zavitz, B.L. Calibration and sensitivity analysis of a spatially-distributed solar radiation model. Inter. J. Geograph. Inform. Sci. 13, 49-65 (1999), https://cfs.nrcan.gc.ca/publications?id=9783.
  • [38] Liu, B.Y.H. & Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy 4, 1-19 (1960), https://doi.org/10.1016/0038-092X(60)90062-1
  • [39] Mie, G. Contributions to the optics of turbid media, especially colloidal metal suspensions, Ann. Phys. 25, 377- 445 (1908), https://doi.org/10.1002/andp.19083300302.
  • [40] Born, M. & Wolf, E. Principles of optics. (Pergamon Press, Oxford 1970) https://archive.org/details/PrinciplesOfOptics.
  • [41] Stratton J.A. Electromagnetic theory. (McGraw-Hill Book Company, Inc., New York 1941), https://archive.org/details/electromagnetict031016mbp/page/n6.
  • [42] Bohren, C.F. & Huffman D.R. Absorption and scattering of light by small particles. (John Wiley & Sons, Inc., New York 1983). https://www.wiley.com/en-us/Absorption+and+Scattering+of+Light+by+Small+Particles-p-9780471293408
  • [43] Bazhan, W. Rozpraszanie światła na pojedynczych mikrocząstkach [Light scattering on individual microparticles], Doctoral thesis, Institute of Physics, Polish Academy of Sciences, (2004), http://www.ifpan.edu.pl/ON-2/on22/thesis.html [in Polish]
  • [44] Bird, R.E. & Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planets and the Earth’s Surface for Cloudless Atmospheres, J. Climate Appl. Meteorol. 25, 87-97 (1986), https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
Uwagi
EN
1. The authors wish to thank doctor engineer Tadeusz Żdanowicz from Wroclaw Technical University and Janusz Teneta, PhD from AGH Krakow for disclosing their measurement data to carry out the above analyses, their help and assistance in implementing the study and editing this article.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a93d0e14-214e-415c-aeef-75695f6a729d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.